
ptg36503484

ptg36503484

Praise for Modern Software Engineering
“Modern Software Engineering gets it right and describes the ways skilled practitioners actually engi-
neer software today. The techniques Farley presents are not rigid, prescriptive, or linear, but they are
disciplined in exactly the ways software requires: empirical, iterative, feedback-driven, economical,
and focused on running code.”

—Glenn Vanderburg, Director of Engineering at Nubank

“There are lots of books that will tell you how to follow a particular software engineering practice;
this book is different. What Dave does here is set out the very essence of what defines software
engineering and how that is distinct from simple craft. He explains why and how in order to master
software engineering you must become a master of both learning and of managing complexity, how
practices that already exist support that, and how to judge other ideas on their software engineer-
ing merits. This is a book for anyone serious about treating software development as a true engi-
neering discipline, whether you are just starting out or have been building software for decades.”

—Dave Hounslow, Software Engineer

“These are important topics and it’s great to have a compendium that brings them together as one
package.”

—Michael Nygard, author of Release IT, professional programmer,
and software architect

“I’ve been reading the review copy of Dave Farley’s book and it’s what we need. It should be required
reading for anyone aspiring to be a software engineer or who wants to master the craft. Pragmatic,
practical advice on professional engineering. It should be required reading in universities and
bootcamps.”

—Bryan Finster, Distinguished Engineer and
Value Stream Architect at USAF Platform One

A01_Farley_FM_pi-xxviii_new1.indd 1 12/10/21 3:21 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

MODERN SOFTWARE ENGINEERING

A01_Farley_FM_pi-xxviii_new1.indd 3 07/10/21 1:25 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

MODERN SOFTWARE ENGINEERING

DOING WHAT WORKS TO BUILD

BETTER SOFTWARE FASTER

David Farley

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

A01_Farley_FM_pi-xxviii_new1.indd 5 07/10/21 1:25 PM

ptg36503484

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those des-
ignations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; cus-
tom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021947543

Copyright © 2022 Pearson Education, Inc.

Cover image: spainter_vfx/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any pro-
hibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-731491-1
ISBN-10: 0-13-731491-4

ScoutAutomatedPrintCode

A01_Farley_FM_pi-xxviii_new1.indd 6 07/10/21 1:25 PM

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

ptg36503484

Pearson’s Commitment to Diversity, Equity, and Inclusion
Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We
embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender,
socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver
opportunities that improve lives and enable economic mobility. As we work with authors to create
content for every product and service, we acknowledge our responsibility to demonstrate inclusivity
and incorporate diverse scholarship so that everyone can achieve their potential through learning.
As the world’s leading learning company, we have a duty to help drive change and live up to our
purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed through learning.

• Our educational products and services are inclusive and represent the rich diversity of
learners.

• Our educational content accurately reflects the histories and experiences of the learners we
serve.

• Our educational content prompts deeper discussions with learners and motivates them to
expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any concerns or
needs with this Pearson product so that we can investigate and address them.

• Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

A01_Farley_FM_pi-xxviii_new1.indd 7 07/10/21 1:25 PM

https://www.pearson.com/report-bias.html

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

I would like to dedicate this book to my wife Kate and to my sons, Tom and Ben.
Kate has been unfailingly supportive of my writing and my work over many years and is always an

intellectually stimulating companion as well as my best friend.
Tom and Ben are young men whom I admire as well as love as a parent, and it has been my plea-

sure, while working on this book, to have also had the privilege to work alongside them on several
joint ventures. Thanks for your help and support.

A01_Farley_FM_pi-xxviii_new1.indd 9 07/10/21 1:25 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

xi

Contents
Foreword xvii

Preface . .. xxi

Acknowledgments xxv

About the Author . .. xxvii

Part I What Is Software Engineering? 1

1 Introduction . 3
Engineering—The Practical Application of Science . 3

What Is Software Engineering?. 4

Reclaiming “Software Engineering” . 5

How to Make Progress . 6

The Birth of Software Engineering . 7

Shifting the Paradigm. 8

Summary . 9

2 What Is Engineering? . 11
Production Is Not Our Problem . 11

Design Engineering, Not Production Engineering . 12

A Working Definition of Engineering . 17

Engineering != Code . 17

Why Does Engineering Matter? . 19

The Limits of “Craft” . 19

Precision and Scalability . 20

Managing Complexity . 21

Repeatability and Accuracy of Measurement. 22

Engineering, Creativity, and Craft . 24

Why What We Do Is Not Software Engineering . 25

Trade-Offs . 26

The Illusion of Progress . 26

A01_Farley_FM_pi-xxviii_new1.indd 11 07/10/21 1:25 PM

ptg36503484

xii Contents

The Journey from Craft to Engineering . 27

Craft Is Not Enough . 28

Time for a Rethink? . 28

Summary . 30

3 Fundamentals of an Engineering Approach . 31
An Industry of Change? . 31

The Importance of Measurement . 32

Applying Stability and Throughput . 34

The Foundations of a Software Engineering Discipline . 36

Experts at Learning. 36

Experts at Managing Complexity . 37

Summary . 38

Part II Optimize for Learning 41

4 Working Iteratively . 43
Practical Advantages of Working Iteratively . 45

Iteration as a Defensive Design Strategy . 46

The Lure of the Plan . 48

Practicalities of Working Iteratively . 54

Summary . 55

5 Feedback . 57
A Practical Example of the Importance of Feedback . 58

Feedback in Coding . 60

Feedback in Integration . 61

Feedback in Design . 63

Feedback in Architecture . 65

Prefer Early Feedback . 67

Feedback in Product Design . 68

Feedback in Organization and Culture. 68

Summary . 70

A01_Farley_FM_pi-xxviii_new1.indd 12 07/10/21 1:25 PM

ptg36503484

xiiiContents

6 Incrementalism . 71
Importance of Modularity . 72

Organizational Incrementalism . 73

Tools of Incrementalism . 74

Limiting the Impact of Change . 76

Incremental Design . 77

Summary . 79

7 Empiricism . 81
Grounded in Reality . 82

Separating Empirical from Experimental . 82

“I Know That Bug!” . 82

Avoiding Self-Deception . 84

Inventing a Reality to Suit Our Argument . 85

Guided by Reality . 88

Summary . 89

8 Being Experimental . 91
What Does “Being Experimental” Mean? . 92

Feedback . 93

Hypothesis . 94

Measurement . 95

Controlling the Variables . 96

Automated Testing as Experiments . 97

Putting the Experimental Results of Testing into Context 98

Scope of an Experiment . 100

Summary . 100

Part III Optimize for Managing Complexity 103

9 Modularity . 105
Hallmarks of Modularity . 106

Undervaluing the Importance of Good Design . 107

The Importance of Testability . 108

A01_Farley_FM_pi-xxviii_new1.indd 13 07/10/21 1:25 PM

ptg36503484

xiv Contents

Designing for Testability Improves Modularity . 109

Services and Modularity . 115

Deployability and Modularity . 116

Modularity at Different Scales . 118

Modularity in Human Systems . 118

Summary . 120

10 Cohesion . 121
Modularity and Cohesion: Fundamentals of Design . 121

A Basic Reduction in Cohesion . 122

Context Matters . 125

High-Performance Software. 128

Link to Coupling . 129

Driving High Cohesion with TDD . 129

How to Achieve Cohesive Software . 130

Costs of Poor Cohesion. 132

Cohesion in Human Systems . 133

Summary . 133

11 Separation of Concerns. 135
Dependency Injection . 139

Separating Essential and Accidental Complexity . 139

Importance of DDD . 142

Testability . 144

Ports & Adapters . 145

When to Adopt Ports & Adapters . 147

What Is an API? . 148

Using TDD to Drive Separation of Concerns . 149

Summary . 150

12 Information Hiding and Abstraction . 151
Abstraction or Information Hiding . 151

What Causes “Big Balls of Mud”? . 152

Organizational and Cultural Problems . 152

A01_Farley_FM_pi-xxviii_new1.indd 14 07/10/21 1:25 PM

ptg36503484

xvContents

Technical Problems and Problems of Design . 154

Fear of Over-Engineering . 157

Improving Abstraction Through Testing . 159

Power of Abstraction . 160

Leaky Abstractions . 162

Picking Appropriate Abstractions. 163

Abstractions from the Problem Domain. 165

Abstract Accidental Complexity . 166

Isolate Third-Party Systems and Code . 168

Always Prefer to Hide Information . 169

Summary . 170

13 Managing Coupling . 171
Cost of Coupling . 171

Scaling Up . 172

Microservices . 173

Decoupling May Mean More Code . 175

Loose Coupling Isn’t the Only Kind That Matters . 176

Prefer Loose Coupling . 177

How Does This Differ from Separation of Concerns? . 178

DRY Is Too Simplistic . 179

Async as a Tool for Loose Coupling . 180

Designing for Loose Coupling . 182

Loose Coupling in Human Systems . 182

Summary . 184

Part IV Tools to Support Engineering in Software . ..185

14 The Tools of an Engineering Discipline . 187
What Is Software Development? . 188

Testability as a Tool . 189

Measurement Points. 192

Problems with Achieving Testability . 193

A01_Farley_FM_pi-xxviii_new1.indd 15 07/10/21 1:25 PM

ptg36503484

xvi Contents

How to Improve Testability . 196

Deployability . 197

Speed . 199

Controlling the Variables . 200

Continuous Delivery . 201

General Tools to Support Engineering . 202

Summary . 203

15 The Modern Software Engineer . 205
Engineering as a Human Process . 207

Digitally Disruptive Organizations . 207

Outcomes vs. Mechanisms . 210

Durable and Generally Applicable . 211

Foundations of an Engineering Discipline . 214

Summary . 215

Index . 217

A01_Farley_FM_pi-xxviii_new1.indd 16 07/10/21 1:25 PM

ptg36503484

xvii

Foreword
I studied computer science at university, and of course I completed several modules called “software
engineering” or variations on the name.

I was not new to programming when I started my degree and had already implemented a fully
working inventory system for my high school’s Careers Library. I remember being extremely
confused by “software engineering.” It all seemed designed to get in the way of actually writing code
and delivering an application.

When I graduated in the early years of this century, I worked in the IT department for a large car
company. As you’d expect, they were big on software engineering. It’s here I saw my first (but
certainly not my last!) Gantt chart, and it’s where I experienced waterfall development. That is, I saw
software teams spending significant amounts of time and effort in the requirements gathering and
design stages and much less time in implementation (coding), which of course overran into testing
time and then the testing...well, there wasn’t much time left for that.

It seemed like what we were told was “software engineering” was actually getting in the way of
creating quality applications that were useful to our customers.

Like many developers, I felt there must be a better way.

I read about Extreme Programming and Scrum. I wanted to work in an agile team and moved jobs
a few times trying to find one. Plenty said they were agile, but often this boiled down to putting
requirements or tasks on index cards, sticking them on the wall, calling a week a sprint, and then
demanding the development team deliver “x” many cards in each sprint to meet some arbitrary
deadline. Getting rid of the traditional “software engineering” approach didn’t seem to work either.

Ten years into my career as a developer, I interviewed to work for a financial exchange in London.
The head of software told me they did Extreme Programming, including TDD and pair programming.
He told me they were doing something called continuous delivery, which was like continuous
integration but all the way into production.

I’d been working for big investment banks where deployment took a minimum of three hours and
was “automated” by the means of a 12-page document of manual steps to follow and commands to
type. Continuous delivery seemed like a lovely idea but surely was not possible.

The head of software was Dave Farley, and he was in the process of writing his Continuous Delivery
book when I joined the company.

I worked with him there for four life-changing, career-making years. We really did do pair programming,
TDD, and continuous delivery. I also learned about behavior-driven development, automated
acceptance testing, domain-driven design, separation of concerns, anti-corruption layers, mechanical
sympathy, and levels of indirection.

I learned about how to create high-performance, low-latency applications in Java. I finally
understood what big O notation really meant and how it applied to real-world coding. In short, all
that stuff I had learned at university and read in books was actually used.

A01_Farley_FM_pi-xxviii_new1.indd 17 07/10/21 1:25 PM

ptg36503484

xviii Foreword

It was applied in a way that made sense, worked, and delivered an extremely high-quality, high-
performance application that offered something not previously available. More than that, we were
happy in our jobs and satisfied as developers. We didn’t work overtime, we didn’t have crunch times
close to releases, the code did not become more tangled and unmaintainable over those years, and
we consistently and regularly delivered new features and “business value.”

How did we achieve this? By following the practices Dave outlines in this book. It wasn’t formalized
like this, and Dave has clearly brought in his experiences from many other organizations to narrow
down to the specific concepts that are applicable for a wider range of teams and business domains.

What works for two or three co-located teams on a high-performance financial exchange isn’t going
to be exactly the same thing that works for a large enterprise project in a manufacturing firm or for a
fast-moving startup.

In my current role as a developer advocate, I speak to hundreds of developers from all sorts of
companies and business domains, and I hear about their pain points (many of them, even now, not
dissimilar to my own experiences 20 years ago) and success stories. The concepts Dave has covered
in this book are general enough to work in all these environments and specific enough to be practi-
cally helpful.

Funnily enough, it was after I left Dave’s team that I started being uncomfortable with the title
software engineer. I didn’t think that what we do as developers is engineering; I didn’t think that it
was engineering that had made that team successful. I thought engineering was too structured a
discipline for what we do when we’re developing complex systems. I like the idea of it being a “craft,”
as that encapsulates the idea of both creativity and productivity, even if it doesn’t place enough
emphasis on the teamwork that’s needed for working on software problems at scale. Reading this
book has changed my mind.

Dave clearly explains why we have misconceptions of what “real” engineering is. He shows how
engineering is a science-based discipline, but it does not have to be rigid. He walks through how
scientific principles and engineering techniques apply to software development and talks about
why the production-based techniques we thought were engineering are not appropriate to software
development.

What I love about what Dave has done with this book is that he takes concepts that might seem
abstract and difficult to apply to the real code we have to work with in our jobs and shows how to
use them as tools to think about our specific problems.

The book embraces the messy reality of developing code, or should I say, software engineering:
there is no single correct answer. Things will change. What was correct at one point in time is
sometimes very wrong even a short time later.

The first half of the book offers practical solutions for not only surviving this reality but thriving in
it. The second half takes topics that might be considered abstract or academic by some and shows
how to apply them to design better (e.g., more robust or more maintainable or other characteristics
of “better”) code.

Here, design absolutely does not mean pages and pages of design documents or UML diagrams
but may be as simple as “thinking about the code before or during writing it.” (One of the things I
noticed when I pair programmed with Dave was how little time he spends actually typing the code.

A01_Farley_FM_pi-xxviii_new1.indd 18 07/10/21 1:25 PM

ptg36503484

xixForeword

Turns out, thinking about what we write before we write it can actually save us a lot of time and
effort.)

Dave doesn’t avoid, or try to explain away, any contradictions in using the practices together or
potential confusion that can be caused by a single one. Instead, because he takes the time to talk
about the trade-offs and common areas of confusion, I found myself understanding for the first time
that it is precisely the balance and the tension between these things that creates “better” systems.
It’s about understanding that these things are guidelines, understanding their costs and benefits,
and thinking of them as lenses to use to look at the code/design/architecture, and occasionally dials
to twiddle, rather than binary, black-and-white, right-or-wrong rules.

Reading this book made me understand why we were so successful, and satisfied, as “software
engineers” during that time I worked with Dave. I hope that by reading this book, you benefit from
Dave’s experience and advice, without having to hire a Dave Farley for your team.

Happy engineering!

—Trisha Gee, developer advocate and Java champion

A01_Farley_FM_pi-xxviii_new1.indd 19 07/10/21 1:25 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

xxi

Preface
This book puts the engineering back into software engineering. In it, I describe a practical approach
to software development that applies a consciously rational, scientific style of thinking to solving
problems. These ideas stem from consistently applying what we have learned about software devel-
opment over the last few decades.

My ambition for this book is to convince you that engineering is perhaps not what you think it is and that
it is completely appropriate and effective when applied to software development. I will then proceed to
describe the foundations of such an engineering approach to software and how and why it works.

This is not about the latest fads in process or technology, but rather proven, practical approaches
where we have the data that shows us what works and what doesn’t.

Working iteratively in small steps works better than not. Organizing our work into a series of small,
informal experiments and gathering feedback to inform our learning allows us to proceed more
deliberately and to explore the problem and solution spaces that we inhabit. Compartmentalizing
our work so that each part is focused, clear, and understandable allows us to evolve our systems
safely and deliberately even when we don’t understand the destination before we begin.

This approach provides us with guidance on where to focus and what to focus on, even when we
don’t know the answers. It improves our chances of success, whatever the nature of the challenge
that we are presented with.

In this book, I define a model for how we organize ourselves to create great software and how we
can do that efficiently, and at any scale, for genuinely complex systems, as well as for simpler ones.

There have always been groups of people who have done excellent work. We have benefitted from
innovative pioneers who have shown us what is possible. In recent years, though, our industry has
learned how to better explain what really works. We now better understand what ideas are more
generic and can be applied more widely, and we have data to back up this learning.

We can more reliably build software better and faster, and we have data to back that up. We can
solve world-class, difficult problems, and we have experience with many successful projects, and
companies, to back those claims, too.

This approach assembles a collection of important foundational ideas and builds on the work that
went before. At one level there is nothing that is new here in terms of novel practices, but the
approach that I describe assembles important ideas and practices into a coherent whole and gives
us principles on which a software engineering discipline may be built.

This is not a random collection of disparate ideas. These ideas are intimately entwined and mutually
reinforcing. When they come together and are applied consistently to how we think about, organize,
and undertake our work, they have a significant impact on the efficiency and the quality of that
work. This is a fundamentally different way of thinking about what it is that we do, even though
each idea in isolation may be familiar. When these things come together and are applied as guiding
principles for decision-making in software, it represents a new paradigm for development.

We are learning what software engineering really means, and it is not always what we expected.

A01_Farley_FM_pi-xxviii_new1.indd 21 07/10/21 1:25 PM

ptg36503484

xxii Preface

Engineering is about adopting a scientific, rationalist approach to solving practical problems within
economic constraints, but that doesn’t mean that such an approach is either theoretical or bureau-
cratic. Almost by definition, engineering is pragmatic.

Past attempts at defining software engineering have made the mistake of being too proscriptive,
defining specific tools or technologies. Software engineering is more than the code that we write
and the tools that we use. Software engineering is not production engineering in any form; that is
not our problem. If when I say engineering it makes you think bureaucracy, please read this book and
think again.

Software engineering is not the same thing as computer science, though we often confuse the two.
We need both software engineers and computer scientists. This book is about the discipline, process,
and ideas that we need to apply to reliably and repeatably create better software.

To be worthy of the name, we would expect an engineering discipline for software to help us solve
the problems that face us with higher quality and more efficiency.

Such an engineering approach would also help us solve problems that we haven’t thought of yet,
using technologies that haven’t been invented yet. The ideas of such a discipline would be general,
durable, and pervasive.

This book is an attempt to define a collection of such closely related, interlinked ideas. My aim is to
assemble them into something coherent that we can treat as an approach that informs nearly all of
the decisions that we make as software developers and software development teams.

Software engineering as a concept, if it is to have any meaning at all, must provide us with an
advantage, not merely an opportunity to adopt new tools.

All ideas aren’t equal. There are good ideas, and there are bad ideas, so how can we tell the
difference? What principles could we apply that will allow us to evaluate any new idea in software
and software development and decide if it will likely be good or bad?

Anything that can justifiably be classified as an engineering approach to solving problems in
software will be generally applicable and foundational in scope. This book is about those ideas. What
criteria should you use to choose your tools? How should you organize your work? How should you
organize the systems that you build and the code that you write to increase your chances of success
in their creation?

A Definition of Software Engineering?
I make the claim in this book that we should think of software engineering in these terms:

Software engineering is the application of an empirical, scientific approach to finding efficient,
economic solutions to practical problems in software.

My aim is an ambitious one. I want to propose an outline, a structure, an approach that we could
consider to be a genuine engineering discipline for software. At the root this is based in three key
ideas.

A01_Farley_FM_pi-xxviii_new1.indd 22 07/10/21 1:25 PM

ptg36503484

xxiii

• Science and its practical application “engineering” are vital tools in making effective progress
in technical disciplines.

• Our discipline is fundamentally one of learning and discovery, so we need to become experts
at learning to succeed, and science and engineering are how we learn most effectively.

• Finally, the systems that we build are often complex and are increasingly so. Meaning, to cope
with their development, we need to become experts at managing that complexity.

What Is in This Book?
Part I, “What Is Software Engineering?”, begins by looking at what engineering really means in the
context of software. This is about the principles and philosophy of engineering and how we can
apply these ideas to software. This is a technical philosophy for software development.

Part II, “Optimize for Learning,” looks at how we organize our work to allow us to make progress in
small steps. How do we evaluate if we are making good progress or merely creating tomorrow’s
legacy system today?

Part III, “Optimize for Managing Complexity,” explores the principles and techniques necessary for
managing complexity. This explores each of these principles in more depth and their meaning and
applicability in the creation of high-quality software, whatever its nature.

The final section, Part IV, “Tools to Support Engineering in Software,” describes the ideas and
approaches to work that maximize our opportunities to learn and facilitate our ability to make
progress in small steps and to manage the complexity of our systems as they grow.

Sprinkled throughout this book, as sidebars, are reflections on the history and philosophy of
software engineering and how thinking has progressed. These inserts provide helpful context to
many of the ideas in this book.

Register your copy of Modern Software Engineering on the InformIT site for convenient access
to updates and/or corrections as they become available. To start the registration process, go to
informit.com/register and log in or create an account. Enter the product ISBN (9780137314911)
and click Submit. Look on the Registered Products tab for an Access Bonus Content link next to
this product, and follow that link to access any available bonus materials. If you would like to be
notified of exclusive offers on new editions and updates, please check the box to receive email
from us.

Preface

A01_Farley_FM_pi-xxviii_new1.indd 23 07/10/21 1:25 PM

http://informit.com/register

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

xxv

Acknowledgments
Writing a book like this takes a long time, a lot of work, and the exploration of numerous ideas. The
people who helped me through that process helped me in all sorts of different ways, sometimes
agreeing with me and reinforcing my convictions and sometimes disagreeing and forcing me either
to strengthen my arguments or to change my mind.

I’d like to start by thanking my wife, Kate, who has helped me in all sorts of ways. Even though Kate
is not a software professional, she read large parts of this book, helping me correct my grammar and
hone my message.

I’d like to thank my brother in-law, Bernard McCarty, for bouncing ideas around on the topic of
science and making me dig deeper to think about why I wanted to talk about experimentation and
empiricism as well as lots of other things.

I’d like to thank Trisha Gee for not only writing such a nice foreword, but also being enthusiastic
about this book when I needed a boost.

I’d like to thank Martin Thompson for always being there to bounce around opinions on computer
science and for usually responding to my rather random thoughts in minutes.

I’d like to thank Martin Fowler, who despite being over-committed to other projects, gave me advice
that helped to strengthen this book.

Many more of my friends have contributed indirectly over the years to help me shape my thinking
on these topics, and many more: Dave Hounslow, Steve Smith, Chris Smith, Mark Price, Andy
Stewart, Mark Crowther, Mike Barker, and many others.

I’d like to thank the team at Pearson for their help and support through the publication process of
this book.

I would also like to thank a whole bunch of people—not all of whom I know—who have been sup-
portive, argumentative, challenging, and thoughtful. I have bounced many of these ideas around
on Twitter and on my YouTube channel for some years now and have been involved in some great
conversations as a result. Thank you!

A01_Farley_FM_pi-xxviii_new1.indd 25 07/10/21 1:25 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

xxvii

About the Author
David Farley is a pioneer of continuous delivery, thought leader, and expert practitioner in
continuous delivery, DevOps, TDD, and software development in general.

Dave has been a programmer, software engineer, systems architect, and leader of successful teams
for many years, from the early days of modern computing, taking those fundamental principles of
how computers and software work and shaping groundbreaking, innovative approaches that have
changed how we approach modern software development. He has challenged conventional think-
ing and led teams to build world-class software.

Dave is co-author of the Jolt award-winning book Continuous Delivery, is a popular conference
speaker, and runs the highly successful and popular “Continuous Delivery” YouTube channel on the
topic of software engineering. He built one of the world’s fastest financial exchanges and is a
pioneer of BDD, an author of the Reactive Manifesto, and a winner of the Duke award for open
source software with the LMAX Disruptor.

Dave is passionate about helping development teams around the world improve the design, quality,
and reliability of their software by sharing his expertise through his consultancy, YouTube channel,
and training courses.

Twitter: @davefarley77

YouTube Channel: https://bit.ly/CDonYT

Blog: http://www.davefarley.net

Company Website: https://www.continuous-delivery.co.uk

A01_Farley_FM_pi-xxviii_new1.indd 27 07/10/21 1:25 PM

https://bit.ly/CDonYT
http://www.davefarley.net
https://www.continuous-delivery.co.uk

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

I
WHAT IS SOFTWARE

ENGINEERING?

9780137314911_print.indb 1 06/10/21 5:26 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

3

Introduction
Engineering—The Practical Application of Science
Software development is a process of discovery and exploration; therefore, to succeed at it, software
engineers need to become experts at learning.

Humanity’s best approach to learning is science, so we need to adopt the techniques and strategies
of science and apply them to our problems. This is often misunderstood to mean that we need to
become physicists measuring things to unreasonable, in the context of software, levels of precision.
Engineering is more pragmatic than that.

What I mean when I say we should apply the techniques and strategies of science is that we should
apply some pretty basic, but nevertheless extremely important, ideas.

The scientific method that most of us learned about in school is described by Wikipedia as:

• Characterize: Make an observation of the current state.

• Hypothesize: Create a description, a theory that may explain your observation.

• Predict: Make a prediction based on your hypothesis.

• Experiment: Test your prediction.

When we organize our thinking this way and start to make progress on the basis of many small,
informal experiments, we begin to limit our risk of jumping to inappropriate conclusions and end
up doing a better job.

1

9780137314911_print.indb 3 06/10/21 5:26 PM

ptg36503484

4 Chapter 1 I ntroduc t ion

If we start to think in terms of controlling the variables in our experiments so that we can achieve
more consistency and reliability in our results, this leads us in the direction of more deterministic
systems and code. If we start to think in terms of being skeptical about our ideas and explore
how we could falsify them, we can identify, and then eliminate, bad ideas more quickly and make
progress much faster.

This book is deeply grounded in a practical, pragmatic approach to solving problems in software,
based on an informal adoption of basic scientific principles, in other words, engineering!

What Is Software Engineering?
My working definition for software engineering that underpins the ideas in this book is this:

Software engineering is the application of an empirical, scientific approach to finding efficient, eco-
nomic solutions to practical problems in software.

The adoption of an engineering approach to software development is important for two main
reasons. First, software development is always an exercise in discovery and learning, and second,
if our aim is to be “efficient” and “economic,” then our ability to learn must be sustainable.

This means that we must manage the complexity of the systems that we create in ways that
maintain our ability to learn new things and adapt to them.

So, we must become experts at learning and experts at managing complexity.

There are five techniques that form the roots of this focus on learning. Specifically, to become
experts at learning, we need the following:

• Iteration

• Feedback

• Incrementalism

• Experimentation

• Empiricism

This is an evolutionary approach to the creation of complex systems. Complex systems don’t spring
fully formed from our imaginations. They are the product of many small steps, where we try out our
ideas and react to success and failure along the way. These are the tools that allow us to accomplish
that exploration and discovery.

Working this way imposes constraints on how we can safely proceed. We need to be able to work in
ways that facilitate the journey of exploration that is at the heart of every software project.

So as well as having a laser-focus on learning, we need to work in ways that allow us to make
progress when the answers, and sometimes even the direction, is uncertain.

For that we need to become experts at managing complexity. Whatever the nature of the prob-
lems that we solve or the technologies that we use to solve them, addressing the complexity of the

9780137314911_print.indb 4 06/10/21 5:26 PM

ptg36503484

5Recla iming “Sof t ware Engineer ing”

problems that face us and the solutions that we apply to them is a central differentiator between
bad systems and good.

To become experts at managing complexity, we need the following:

• Modularity

• Cohesion

• Separation of Concerns

• Abstraction

• Loose Coupling

It is easy to look at these ideas and dismiss them as familiar. Yes, you are almost certainly familiar
with all of them. The aim of this book is to organize them and place them into a coherent approach
to developing software systems that helps you take best advantage of their potential.

This book describes how to use these ten ideas as tools to steer software development. It then
goes on to describe a series of ideas that act as practical tools to drive an effective strategy for any
software development. These ideas include the following:

• Testability

• Deployability

• Speed

• Controlling the variables

• Continuous delivery

When we apply this thinking, the results are profound. We create software of higher quality, we
produce work more quickly, and the people working on the teams that adopt these principles
report that they enjoy their work more, feel less stress, and have a better work-life balance.1

These are extravagant claims, but again they are backed by the data.

Reclaiming “Software Engineering”
I struggled over the title of this book, not because I didn’t know what I wanted to call it, but because
our industry has so redefined what engineering means in the context of software that the term has
become devalued.

In software it is often seen as either simply a synonym for “code” or something that puts people off
as being overly bureaucratic and procedural. For true engineering, nothing could be further from
the truth.

1. Based on findings from the “State of DevOps” reports as well as reports from Microsoft and Google

9780137314911_print.indb 5 06/10/21 5:26 PM

ptg36503484

6 Chapter 1 I ntroduc t ion

In other disciplines, engineering simply means the “stuff that works.” It is the process and practice
that you apply to increase your chances of doing a good job.

If our “software engineering” practices don’t allow us to build better software faster, then they aren’t
really engineering, and we should change them!

That is the fundamental idea at the heart of this book, and its aim is to describe an intellectually
consistent model that pulls together some foundational principles that sit at the roots of all great
software development.

There is never any guarantee of success, but by adopting these mental tools and organizing
principles and applying them to your work, you will certainly increase your chances of success.

How to Make Progress

Software development is a complex, sophisticated activity. It is, in some ways, one of the more
complex activities that we, as a species, undertake. It is ridiculous to assume that every individual
or even every team can, and should, invent how to approach it, from scratch, every time we begin a
new piece of work.

We have learned, and continue to learn, things that work and things that don’t. So how can we, as
an industry and as teams, make progress and build on the shoulders of giants, as Isaac Newton once
said, if everyone has a veto on everything? We need some agreed principles and some discipline
that guides our activities.

The danger in this line of thinking is that, if misapplied, it can lead to draconian, overly directive,
“decision from authority”–style thinking.

We will fall back on previous bad ideas, where the job of managers and leaders is assumed to be to
tell everyone else what to do and how to do it.

The big problem with being “proscriptive” or overly “directive” is, what do we do if some of our ideas
are wrong or incomplete? They inevitably will be, so how can we challenge and refute old, but well-
established, bad ideas and evaluate novel, potentially great, untried ideas?

We have a very strong example of how to solve these problems. It’s an approach that allows us the
intellectual freedom to challenge and refute dogma and to differentiate between fashion, plain-old
bad ideas and great ones, whatever their source. It allows us to replace the bad ideas with better
ideas and to improve on the good ideas. Fundamentally we need some structure that allows us to
grow and to evolve improved approaches, strategies, processes, technologies, and solutions. We call
this good example science!

When we apply this kind of thinking to solving practical problems, we call it engineering!

This book is about what it means to apply scientific-style reasoning to our discipline and so achieve
something that we can genuinely and accurately refer to as software engineering.

9780137314911_print.indb 6 06/10/21 5:26 PM

ptg36503484

7The Bir th of Sof t ware Engineer ing

The Birth of Software Engineering

Software engineering as a concept was created at the end of the 1960s. The term was first used by
Margaret Hamilton who later became the director of the Software Engineering Division of the MIT
Instrumentation Lab. Margaret was leading the effort to develop the flight-control software for the
Apollo space program.

During the same period, the North Atlantic Treaty Organization (NATO) convened a conference
in Garmisch-Partenkirchen, Germany, to try to define the term. This was the first software
engineering conference.

The earliest computers had been programmed by flipping switches, or even hard-coded as part of
their design. It quickly became clear to the pioneers that this was slow and inflexible, and the idea
of the “stored program” was born. This is the idea that, for the first time, made a clear distinction
between software and hardware.

By the late 1960s, computer programs had become complex enough to make them difficult to
create and maintain in their own right. They were involved in solving more complex problems and
were rapidly becoming the enabling step that allowed certain classes of problems to be solved
at all.

There was perceived to be a significant gap between the rate at which progress was being made in
hardware compared to the rate at which it was being made in software. This was referred to, at the
time, as the software crisis.

The NATO conference was convened, in part, in response to this crisis.

Reading the notes from the conference today, there are many ideas that are clearly durable. They
have stood the test of time and are as true today as they were in 1968. That should be interesting to
us, if we aspire to identify some fundamental characteristics that define our discipline.

A few years later, looking back, Turing award–winner Fred Brooks compared the progress in
software with that in hardware:

There is no single development, in either technology or management technique, which by itself
promises even one order of magnitude improvement within a decade in productivity, in reliability, in
simplicity.2

Brooks was saying this in comparison with the famous Moore’s law,3 which hardware development
had been tracking for many years.

2. Source: Fred Brooks’ 1986 paper called “No Silver Bullet.” Seehttps:// bit.ly/2UalM4T.

3. In 1965, Gordon Moore predicted that transistor densities (not performance) would double every year, later
revised to every two years, for the next decade (to 1975). This prediction became a target for semiconductor
producers and significantly exceeded Moore’s expectations, being met for several more decades. Some
observers believe that we are reaching the end of this explosive growth in capacity, because of the limitations
of the current approaches and the approach of quantum effects, but at the time of writing, high-density
semiconductor development continues to track Moore’s law.

9780137314911_print.indb 7 06/10/21 5:26 PM

https://bit.ly/2UalM4T

ptg36503484

8 Chapter 1 I ntroduc t ion

This is an interesting observation and one that, I think, would surprise many people, but in essence
it has always been true.

Brooks goes on to state that this is not so much a problem of software development; it is much
more an observation on the unique, staggering improvement in hardware performance:

We must observe that the anomaly is not that software progress is so slow but that computer hard-
ware progress is so fast. No other technology since civilization began has seen six orders of magni-
tude price-performance gain in 30 years.

He wrote this in 1986, what we would today think of as the dawn of the computer age. Progress
in hardware since then has continued at this pace, and the computers that seemed so powerful to
Brooks look like toys compared to the capacity and performance of modern systems. And yet...his
observation on the rate of improvement in software development remains true.

Shifting the Paradigm
The idea of paradigm shift was created by physicist Thomas Kuhn.

Most learning is a kind of accretion. We build up layers of understanding, with each layer founda-
tionally under-pinned by the previous one.

However, not all learning is like that. Sometimes we fundamentally change our perspective on
something, and that allows us to learn new things, but that also means we must discard what went
before.

In the 18th century, reputable biologists (they weren’t called that then) believed that some animals
spontaneously generated themselves. Darwin came along in the middle of the 19th century and
described the process of natural selection, and this overturned the idea of spontaneous generation
completely.

This change in thinking ultimately led to our modern understanding of genetics and our ability to
understand life at a more fundamental level, create technologies that allow us to manipulate these
genes, and create COVID-19 vaccines and genetic therapies.

Similarly, Kepler, Copernicus, and Galileo challenged the then conventional wisdom that Earth was
at the center of the universe. They instead proposed a heliocentric model for the solar system. This
ultimately led to Newton creating laws of gravitation and Einstein creating general relativity, and it
allowed us to travel in space and create technologies like GPS.

The idea of paradigm shift implicitly includes the idea that when we make such a shift, we will, as
part of that process, discard some other ideas that we now know are no longer correct.

The implications of treating software development as a genuine engineering discipline, rooted in
the philosophy of the scientific method and scientific rationalism, are profound.

M01_Farley_C01_p001-010.indd 8 07/10/21 1:28 PM

ptg36503484

9Summar y

It is profound not only in its impact and effectiveness, described so eloquently in the Accelerate
Book,4 but also in the essential need to discard the ideas that this approach supersedes.

This gives us an approach to learning more effectively and discarding bad ideas more efficiently.

I believe that the approach to software development that I describe in this book represents such a
paradigm shift. It provides us with a new perspective on what it is that we do and how we do it.

Summary
Applying this kind of engineering thinking to software does not need to be heavyweight or overly
complex. The paradigm shift in thinking differently about what it is that we do, and how we do it,
when we create software should help us to see the wood for the trees and make this simpler, more
reliable, and more efficient.

This is not about more bureaucracy; it is about enhancing our ability to create high-quality software
more sustainably and more reliably.

4. The people behind the “State of DevOps” reports, DORA, described the predictive model that they have
created from their research. Source: Accelerate: The Science of Lean Software and DevOps by Nicole Fosgren, Jez
Humble, and Gene Kim (2018)

M01_Farley_C01_p001-010.indd 9 07/10/21 1:28 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

11

What Is Engineering?
I have been talking to people about software engineering for some years now. As a result I regularly
get involved in a surprising number of conversations about bridge building. They usually start with
the phrase “Yes, but software isn’t bridge building” as though this was some kind of revelation.

Of course, software engineering is not the same as bridge building, but what most software devel-
opers think of as bridge building isn’t like real bridge building, either. This conversation is really a
form of confusion between production engineering and design engineering.

Production engineering is a complex problem when the discipline involved is dealing with physical
things. You need to get those physical things created to certain levels of precision and quality.

You need your widgets delivered to some specific location in space, at a particular time, to a defined
budget, and so on. You need to adapt theoretical ideas to practical reality as your models and
designs are found to be lacking.

Digital assets are completely different. Although there are some analogs to these problems, for
digital artifacts these problems either don’t really exist or can be made trivially simple. The cost of
production of digital assets of any kind is essentially free, or at least should be.

Production Is Not Our Problem
For most human endeavor, the production of “things” is the hard part. It may take effort and ingenu-
ity to design a car, an airliner, or a mobile phone, but taking that initial prototype design and idea
into mass production is immensely more expensive and complicated.

2

9780137314911_print.indb 11 06/10/21 5:26 PM

ptg36503484

12 Chapter 2 What Is Engineer ing?

This is particularly true if we aim to do it with any kind of efficiency. As a result of these difficulties,
we, products of the industrial age and industrial age thinking, automatically, almost unthinkingly,
worry about this aspect, the production, of any significant task.

The result of this, in software, has been that we have fairly consistently tried to apply “production-
style thinking” to our industry. Waterfall1 processes are production lines for software. They are the
tools of mass production. They are not the tools of discovery, learning, and experimentation that
are, or at least should be, at the heart of our profession.

Unless we are foolish in our software development choices, for us, production consists of triggering
the build!

It is automatic, push-button, immensely scalable and so cheap that it is best considered free. We
can still make mistakes and get it wrong, but these are problems that are understood and well
addressed by tools and technology.

“Production” is not our problem. This makes our discipline unusual. It also makes it subject to easy mis-
understanding and misapplied thinking and practices, because this ease of production is so unusual.

Design Engineering, Not Production Engineering
Even in the real world, what most people think of as “bridge building” is different if the bridge-
builders are building the first of a new kind of bridge. In this circumstance you have two problems:
one that is relevant to software development and one that is not.

First, the one that is not—when building even the first of a new kind of bridge, because it is physi-
cal, you have all of the production problems, and many more, that I mentioned. From a software
perspective, these can be ignored.

The second, in the case of bridge-building, is that in addition to those production problems, if you are
building the first of a new kind of bridge, the second really difficult part is the design of your new bridge.

This is difficult because you can’t iterate quickly when your product is something physical. When
building physical things, they are difficult to change.

As a result, engineers in other disciplines adopt modeling techniques. They may choose to build
small physical models, and these days probably computer simulations of their design or mathemati-
cal models of various kinds.

In this respect, we software developers have an enormous advantage. A bridge-builder may create
a computer simulation of their proposed design, but this will only be an approximation of the real
thing. Their simulation, their model, will be inaccurate. The models that we create as software, our
computer simulations of a problem, are our product.

1. Waterfall, as applied to software development, is a staged, sequential approach to organizing work by break-
ing it down into a series of distinct phases with well-defined handovers between each phase. The idea is that
you tackle each phase in turn, rather than iterate.

9780137314911_print.indb 12 06/10/21 5:26 PM

ptg36503484

13Design Engineer ing, Not Produc t ion Engineer ing

We don’t need to worry if our models match reality; our models are the reality of our system, so we
can verify them. We don’t need to worry about the cost of changing them. They are software; thus,
they are dramatically easier to change, at least when compared to a bridge.

Ours is a technical discipline. We like to think of ourselves in this context, and my guess is that the
majority of people who think of themselves as professional software developers probably have had
some science in their education.

Despite this, little software development is practiced with scientific rationalism in mind. In part,
this is because we took some missteps in our history. In part this is because we assume that science
is hard, expensive, and impossible to achieve within the scope of normal software development
schedules.

Part of the mistake here is to assume some level of idealistic precision that is impossible in any field,
let alone the field of software development. We have made the mistake of seeking mathematical
precision, which is not the same thing as engineering!

Engineering as Math

During the late 1980s and early 1990s there was a lot of talk about more programming-structural
ideas. The thinking about the meaning of software engineering moved on to examine the ways
in which we work to generate the code. Specifically, how could we work in ways that are more
effective at identifying and eliminating problems in our designs and implementations?

Formal methods became a popular idea. Most university courses, at the time, would teach
formal methods. A formal method is an approach to building software systems that has, built into
it, a mathematical validation of the code written. The idea is that the code is proven to be correct.

The big problem with this is that while it is hard to write code for a complex system, it is even
harder to write code that defines the behavior of a complex system and that also proves itself to
be correct.

Formal methods are an appealing idea, but pragmatically they haven’t gained widespread
adoption in general software development practice because at the point of production, they
make the code harder to produce, not less.

A more philosophical argument is a little different, though. Software is unusual stuff; it clearly
appeals to people who often also enjoy mathematical thinking. So the appeal of taking a math-
ematical approach to software is obvious, but also somewhat limiting.

Consider a real-world analogy. Modern engineers will use all the tools at their disposal to
develop a new system. They will create models and simulations and crunch the numbers to fig-
ure out if their system will work. Their work is heavily informed by mathematics, but then they
will try it out for real.

In other engineering disciplines, math is certainly an important tool, but it doesn’t replace the
need to test and to learn empirically from real-world experience. There is too much variance

9780137314911_print.indb 13 06/10/21 5:26 PM

ptg36503484

14 Chapter 2 What Is Engineer ing?

in the real world to completely predict an outcome. If math alone was enough to design an
airplane, then that is what aerospace companies would do, because it would be cheaper than
building real prototypes, but they don’t do that. Instead, they use math extensively to inform
their thinking, and then they check their thinking by testing a real device. Software is not quite
the same as an airplane or a space rocket.

Software is digital and runs on mostly deterministic devices called computers. So for some nar-
row contexts, if the problem is simple enough, constrained enough, deterministic enough, and
the variability low enough, then formal methods can prove a case. The problem here is the
degree to which the system as a whole is deterministic. If the system is concurrent anywhere,
interacts with the “real world” (people) anywhere, or is just working in a sufficiently complex
domain, then the “provability” quickly explodes to become impractical.

So, instead, we take the same course as our aerospace colleagues, apply mathematical thinking
where we can, and take a data-driven, pragmatic, empirical, experimental approach to learning,
allowing us to adapt our systems as we grow them incrementally.

As I write this book, SpaceX is busy blowing up rockets while it works to perfect Starship.2 It has cer-
tainly built mathematical models of nearly every aspect of the design of its rockets, its engines, the
fuel delivery systems, launch infrastructure, and everything else, but then it tests them.

Even something seemingly simple, like switching from 4mm stainless steel to 3mm stainless steel,
may sound like a pretty controlled change. SpaceX has access to detailed data on the tensile
strength of the metal. It has experience and data collected from tests that show exactly how strong
pressure vessels constructed from the 4mm steel are.

Yet still, after SpaceX crunched the numbers, it built experimental prototypes to evaluate the dif-
ference. It pressurized these test pieces to destruction to see if the calculations were accurate and
to gain deeper insight. SpaceX collected data and validated its models because these models will
certainly be wrong in some esoteric, difficult-to-predict way.

The remarkable advantage that we have over all other engineering disciplines means that the
models that we create in software are the executable result of our work, so when we test them, we
are testing our products, not our best guess of the reality of our products.

If we work carefully to isolate the part of the system that we are interested in, we can evaluate it in
exactly the same environment that it will be exposed to in production. So our experimental simula-
tion can much more precisely and much more accurately represent the “real world” of our systems
than in any other discipline.

2. At the time of writing, SpaceX is developing a new fully reusable spacecraft. SpaceX’s intent is to create a
system that will allow people to journey to and live on Mars as well as explore other parts of the solar system.
It has adopted an intentionally fast, iterative style of engineering to rapidly create and evaluate a series of
fast-to-produce prototypes. This is design engineering in extreme form at the limits of engineering knowl-
edge and presents a fascinating example of what it takes to create something new.

9780137314911_print.indb 14 06/10/21 5:26 PM

ptg36503484

15Design Engineer ing, Not Produc t ion Engineer ing

In his excellent talk called “Real Software Engineering,”3 Glenn Vanderburg says that in other disciplines
“Engineering means stuff that works” and that almost the opposite has become true for software.

Vanderburg goes on to explore why this is the case. He describes an academic approach to software
engineering that was so onerous that almost no one who had practiced it would recommend it for
future projects.

It was heavyweight and added no significant value to the process of software development at all. In
a telling phrase, Vanderburg says:

[Academic software engineering] only worked because sharp people, who cared, were willing to cir-
cumvent the process.

That is not engineering by any sensible definition.

Vanderburg’s description of “engineering as the stuff that works” is important. If the practices that
we choose to identify as “engineering” don’t allow us to make better software faster, then they don’t
qualify as engineering!

Software development, unlike all physical production processes, is wholly an exercise in discovery,
learning, and design. Our problem is one of exploration, and so we, even more than the spaceship
designers, should be applying the techniques of exploration rather than the techniques of produc-
tion engineering. Ours is solely a discipline of design engineering.

So if our understanding of engineering is often confused, what is engineering really about?

3. https://youtu.be/RhdlBHHimeM

The First Software Engineer

During the period when Margaret Hamilton was leading the development of the Apollo flight
control systems, there were no “rules of the game” to follow. She said, “We evolved our ‘software
engineering’ rules with each new relevant discovery, while top management rules from NASA
went from “’complete freedom’” to “’bureaucratic overkill.’”

There was very little experience of such complex projects to call on at this time. So the team
was often breaking new ground. The challenges facing Hamilton and her team were profound,
and there was no looking up the answers on Stack Overflow in the 1960s.

Hamilton described some of the challenges:

The space mission software had to be man-rated. Not only did it have to work, it had to work
the first time. Not only did the software itself have to be ultra-reliable, it needed to be able to
perform error detection and recovery in real time. Our languages dared us to make the most
subtle of errors. We were on our own to come up with rules for building software. What we
learned from the errors was full of surprises.

9780137314911_print.indb 15 06/10/21 5:26 PM

https://youtu.be/RhdlBHHimeM

ptg36503484

16 Chapter 2 What Is Engineer ing?

At the same time, software in general was looked down on as a kind of “poor relation”
compared to other, more “grown-up” forms of engineering. One of the reasons that Hamilton
coined the term software engineering was to try to get people in other disciplines to take the
software more seriously.

One of the driving forces behind Hamilton’s approach was the focus on how things fail—the
ways in which we get things wrong.

There was a fascination on my part with errors, a never ending pass-time of mine was what
made a particular error, or class of errors, happen and how to prevent it in the future.

This focus was grounded in a scientifically rational approach to problem-solving. The assumption
was not that you could plan and get it right the first time, rather that you treated all ideas, solu-
tions, and designs with skepticism until you ran out of ideas about how things could go wrong.
Occasionally, reality is still going to surprise you, but this is engineering empiricism at work.

The other engineering principle that is embodied in Hamilton’s early work is the idea of “fail-
ing safely.” The assumption is that we can never code for every scenario, so how do we code in
ways that allow our systems to cope with the unexpected and still make progress? Famously
it was Hamilton’s unasked-for implementation of this idea that saved the Apollo 11 mission
and allowed the Lunar Module Eagle to successfully land on the moon, despite the computer
becoming overloaded during the descent.

As Neil Armstrong and Buzz Aldrin descended in the Lunar Excursion Module (LEM) toward the
moon, there was an exchange between the astronauts and mission control. As the LEM neared
the surface of the moon, the computer reported 1201 and 1202 alarms. The astronauts asked
whether they should proceed or abort the mission.

NASA hesitated until one of the engineers shouted “Go!” because he understood what had hap-
pened to the software.

On Apollo 11, each time a 1201 or 1202 alarm appeared, the computer rebooted, restarted the
important stuff, like steering the descent engine and running the DSKY to let the crew know
what was going on, but did not restart all the erroneously-scheduled rendezvous radar jobs. The
NASA guys in the MOCR knew—because MIT had extensively tested the restart capability—that
the mission could go forward.4

This “fail safe” behavior was coded into the system, without any specific prediction of when or
how it would be useful.

So Hamilton and her team introduced two key attributes of a more engineering-led style of
thinking, with empirical learning and discovery and the habit of imagining how things could
possibly go wrong.

4. Source: “Peter Adler” (https://go.nasa.gov/1AKbDei)

9780137314911_print.indb 16 06/10/21 5:26 PM

https://go.nasa.gov/1AKbDei

ptg36503484

17Engineer ing != Code

A Working Definition of Engineering
Most dictionary definitions of the word engineering include common words and phrases: “applica-
tion of math,” “empirical evidence,” “scientific reasoning,” “within economic constraints.”

I propose the following working definition:

Engineering is the application of an empirical, scientific approach to finding efficient, economic
solutions to practical problems.

All of the words here matter. Engineering is applied science. It is practical. Using “empirical” means
to learn and advance understanding and solutions toward the resolution of a problem.

The solutions that engineering creates are not abstract ivory-tower things; they are practical and
applicable to the problem and the context.

They are efficient, and they are created with an understanding of, and constrained by, the econom-
ics of the situation.

Engineering != Code
Another common misperception of what engineering means when it comes to software develop-
ment is that engineering is only the output—the code or perhaps its design.

This is too narrow an interpretation. What does engineering mean to SpaceX? It is not the rockets;
they are the products of engineering. Engineering is the process of creating them. There is certainly
engineering in the rockets, and they are certainly “engineered structures,” but we don’t see only the
act of welding the metal as engineering unless we have a weirdly narrow view of the topic.

If my definition works, then engineering is about applying scientific rationalism to solving problems.
It is the “solving of the problems” where the engineering really comes to play, not just the solutions
themselves. It is the processes, tools, and techniques. It is the ideas, philosophy, and approach that
together make up an engineering discipline.

I had an unusual experience while writing this book: I published a video about the failure of a game
on my YouTube channel, which was dramatically more popular than most of my videos.

The most common negative feedback I got, in saying that this was a “failure of software engineer-
ing,” was that I was blaming programmers and not their managers. I meant that it was a failure in
the whole approach to producing software. The planning was bad, the culture was bad, the code
was bad (lots of bugs apparently).

So, for this book, when I talk about engineering, unless I qualify it specifically, I mean everything
that it takes to make software. Process, tools, culture—all are part of the whole.

9780137314911_print.indb 17 06/10/21 5:26 PM

ptg36503484

18 Chapter 2 What Is Engineer ing?

The Evolution of Programming Languages

Early efforts in software engineering were focused primarily on creating better languages in
which to program things. The first computers made little or no separation between hardware
and software. They were programmed by plugging wires into patch boards or flipping switches.

Interestingly, this job was often given to “computers,” often women, who had previously done
the computation (math) before the computer (as a machine) arrived.

This underplays their role, though. The “program” at this point, specified by someone “more
important” in the organization, was often of the form “we’d like to solve this mathematical prob-
lem.” The organization of the work, and later the specifics of how to translate that into appropri-
ate machine-settings, was left to these human “computers.” These were the real pioneers of our
discipline!

We would use a different language to describe these activities today. We would describe the
description passed to the people doing the work as requirements, the act of forming a plan to
solve the problem as programming, and the “computers” as the first real programmers of these
early electronic computer systems.

The next big step was to move to “stored programs” and their encoding. This was the era of
paper tape and punched cards. The first steps on the adoption of this storage media for pro-
grams was still pretty hardcore. Programs were written in machine code and stored on tape, or
card, before being fed into the machines.

High-level languages that could capture ideas at a higher level of abstraction were the next
major advance. This allowed programmers to make progress much more quickly.

By the early 1980s, nearly all the foundational concepts in language design had been covered.
That doesn’t mean there was no progress after this, but most of the big ideas had been covered.
Nevertheless, software development’s focus on language as a core idea in our discipline has
continued.

There were several significant steps that certainly affected the productivity of programmers, but
probably only one step gave, or came close to giving, Fred Brooks 10x improvement. That was
the step from machine code to high-level languages.

Other steps along this evolutionary path were significant, such as procedural programming,
object orientation, and functional programming, but all of these ideas have been around for a
very long time.

Our industry’s obsession with languages and tools has been damaging to our profession. This
doesn’t mean that there are no advances to be had in language design, but most work in lan-
guage design seems to concentrate on the wrong kinds of things, such as syntactic advances
rather that structural advances.

9780137314911_print.indb 18 06/10/21 5:26 PM

ptg36503484

19The L imits of “Craf t ”

In the early days, certainly, we needed to learn and explore what is possible and what made
sense. Since then, though, a lot of effort has been expended for relatively little progress. When
Fred Brooks said there were no 10x improvements, the rest of his paper was focused on what
we could do to overcome this limitation:

The first step toward the management of disease was replacement of demon theories, and
humors theories, by the germ theory. That very step, the beginning of hope, in itself dashed all
hopes of magical solutions.

…the system should first be made to run, even though it does nothing useful except call the
proper set of dummy subprograms. Then, bit-by-bit it is fleshed out, with the subprograms in
turn being developed into actions or calls to empty stubs in the level below.

These ideas were based on deeper, more profound ideas than trivial details of language
implementation.

These were issues more to do with the philosophy of our discipline and the application of some
foundational principles that hold true whatever the nature of the technology.

Why Does Engineering Matter?
Another way to think of this is to consider how we go about the production of the things that help
us. For the vast majority of human history, everything that we created was the product of craft. Craft
is an effective approach to creating things, but it has its limits.

Craft is very good at creating “one-off” items. In a craft-based production system, each item will,
inevitably, be unique. In its purest sense this is true of any production system, but in craft-based
approaches this is more true because the precision, and so the repeatability, of the production pro-
cess is generally low.

This means that the amount of variance between individually crafted artifacts is higher. Even the most
masterful of craftspeople will create items with only human levels of precision and tolerance. This seri-
ously impacts the ability of craft-based systems to reproduce things reliably. Grace Hopper said:

To me programming is more than an important practical art. It is also a gigantic undertaking in the
foundations of knowledge.

The Limits of “Craft”
We often have an emotional reaction to craft-based production. As human beings we like the vari-
ance; we like the feeling that our treasured, hand-crafted thing embodies the skill, love, and care of
the craftsperson who created it.

9780137314911_print.indb 19 06/10/21 5:26 PM

ptg36503484

20 Chapter 2 What Is Engineer ing?

However, at the root, craft-based production is fundamentally low-quality. A human being, however
talented, is not as accurate as a machine.

We can build machines that can manipulate individual atoms, even subatomic particles, but a
human being is extraordinarily talented if they can produce something, manually, with the accuracy
of 1/10 of a millimeter.5

How does this precision matter in software? Let us think about what happens when our programs
are executed. A human being can perceive change, any change, at the limit of approximately
13 milliseconds. To process an image or to react to something takes hundreds of milliseconds.6

At the time of writing, most modern consumer-level computers operate on a clock cycle of around
3GHz. That is 3 billion cycles per second. Modern computers are multicore and operate on instruc-
tions in parallel, so often they process more than one instruction per cycle, but let us ignore that
and imagine, for simplicity, that each machine instruction that moves values between registers,
adds them or references some in-cache piece of memory, takes a single clock cycle.

That is 3 billion operations per second. If we do the math and calculate how many instructions a
modern computer can crunch through in the absolute minimum time that a human being could
perceive any external event, that number is 39,000,000 instructions!

If we limit the quality of our work to human-scale perception and accuracy, we are, at the very best,
sampling what is going on at a rate of 1:(39 million). So, what are our chances of us missing something?

Precision and Scalability

This difference between craft and engineering highlights two aspects of engineering that are
important in the context of software: precision and scalability.

Precision is obvious: we can manipulate things at a much higher resolution of detail, through the
application of engineering techniques, than by hand. Scalability is perhaps less immediately obvi-
ous but is even more important. An engineering approach is not limited in the same way that a
craft-based approach is.

The limits of any approach that relies on human capability is, ultimately, limited by human capabil-
ity. If I dedicate myself to achieving something extraordinary, I may learn to paint a line, file a piece
of metal, or stitch leather car seats to within tiny fractions of a millimeter, but however hard I try,
however gifted I may be, there are hard limits to how accurate human muscles and senses can be.

An engineer, though, can create a machine to make something smaller and more precise. We can
build machines (tools) to make smaller machines.

This technique is scalable all the way down to the limits of quantum physics and all the way up to
the limits of cosmology. There is nothing, at least in theory, to prevent us, via the application of

5. Atoms vary in size but are usually measured in tens of picometers (1 x 10^-12m). So, the best of
human handcraft is 10 million times less accurate than a good machine.

6. “How Fast is Real-time? Human Perception and Technology,”https://bit.ly/2Lb7pL1

9780137314911_print.indb 20 06/10/21 5:26 PM

https://bit.ly/2Lb7pL1

ptg36503484

21Managing Complexit y

engineering, to manipulate atoms and electrons (as we already do) or stars and blackholes (as we
may do one day).

To put this more clearly into the context of software, if we are very skilled and train very hard, we
could perhaps enter text and click buttons quickly enough to test our software at a rate where we
could imagine being able to carry out a test of our software in a few minutes. Let’s imagine for the
sake of comparison that we can carry out one test of our software every minute (not a pace that I
can imagine myself being able to sustain for very long).

If we can run a test per minute, we are under-testing compared to a computer by hundreds of thou-
sands, probably millions, of times.

I have built systems that ran around 30,000 test cases in about 2 minutes. We could have scaled that
up considerably further but had no reason to do so. Google claims to run 150 million test execu-
tions per day. That works out to 104,166 tests per minute.7

Not only can we use our computers to test hundreds of thousands of times more quickly than a
human being, we can sustain that pace for as long as we have electricity for our computers. That is
scalable!

Managing Complexity

There is another way in which engineering scales, where craft does not. Engineering thinking tends
to lead us to compartmentalize problems. Before the American Civil War in the 1860s, if you wanted
a gun, you went to a gunsmith. The gunsmith was a craftsman, and he was usually a man!

The gunsmith would create a whole gun for you. He would understand every aspect of that gun, and
it would be unique to you. He would probably give you a mold for your bullets, because your bullets
would be different from everyone else’s and specific to your gun. If your gun had screws, each one
was almost certainly different from all of the others, because it would have been hand-made.

The American Civil War was unique in its day. It was the first war where arms were mass-produced.

There is a story of the man who wanted to sell rifles to the northern states. He was an innovator
and, it seems, a bit of a showman. He went to Congress to make his case to get the contract to make
the rifles for the armies of the northern states.

He took with him a sack full of rifle components. As part of his presentation to the Congressmen, he
emptied the bag of components onto the floor of Congress and asked the Congressmen to select
components from the pile. From these components he assembled a rifle, won the contract, and
invented mass production.

This was the first time that this kind of standardization was possible. A lot of things had to happen
to make it possible; machines (tools) had to be engineered to make components that were

7. “The State of Continuous Integration Testing at Google,”https://bit.ly/3eLbAgB

9780137314911_print.indb 21 06/10/21 5:26 PM

https://bit.ly/3eLbAgB

ptg36503484

22 Chapter 2 What Is Engineer ing?

repeatably identical to one another, within some defined tolerance. The design had to be modular
so that the components could be assembled, and so on.

The result was devastating. The American Civil War was, in essence, the first modern war. Hundreds
of thousands of people were killed because of the mass production of armaments. These arms were
cheaper, easier to maintain and repair, and more accurate than those that had gone before.

All this was because they were engineered with more precision, but also because there were lots
more of them. The process of production could be de-skilled and scaled up. Instead of needing an
expert master craftsperson for each weapon, the machinery in the factory could allow less-skilled
people to create rifles of comparable precision to a master.

Later, as tooling, production techniques, and engineering understanding and discipline increased,
these mass-produced weapons exceeded the quality, as well as the productivity, of even the great-
est master craftsmen, and at a price that anyone could afford.

A simplistic view may interpret this as a “need to standardize,” or a need to adopt “mass production
for software,” but this is, once again, confusing the fundamental nature our problem. This is not
about production—it is about design.

If we design a gun that is modular and componentized in the way that the arms manufacturers of
the American Civil War did, then we can design parts of that gun more independently. Viewing this
from a design perspective rather than from a production engineering or manufacturing perspective,
we have improved our management of the complexity of building guns.

Before this step, the gunsmith master-craftsmen would need to think of the whole gun if they
wanted to change some aspect of its design. By componentizing the design, the Civil War manufac-
turers could explore changes incrementally to improve the quality of their products step-by-step.
Edsger Dijkstra said:

The art of programming is the art of organizing complexity.

Repeatability and Accuracy of Measurement
The other aspect of engineering that is commonly seen, and is sometimes used to reject engineer-
ing as an idea applicable to software, is that of repeatability.

If we can build a machine to reliably and accurately reproduce a nut and bolt, we can churn them
out, and all of the copies of bolts will work with any of the copies of nuts that are produced.

This is a production problem and not really applicable to software. However, the more fundamental
idea that underpins this kind of capability is applicable to software.

To make nuts and bolts, or anything else, that needs to reliably work together, we need to be able
to measure things with a certain level of precision. Accuracy in measurement is an enabling aspect
of engineering in any discipline.

9780137314911_print.indb 22 06/10/21 5:26 PM

ptg36503484

23Repeatabi l i t y and Accurac y of Measurement

Let us for a moment imagine a complex software system. After a few weeks of operation, let’s say
the system fails. The system is restarted, and two weeks later it fails again in much the same way;
there is a pattern. How would a craft-focused team cope with this compared to an engineering-
focused team?

The crafty team will probably decide that what they need is to test the software more thoroughly.
Because they are thinking in craft terms, what they want is to clearly observe the failure.

This isn’t stupid; it makes sense in this context, but how to do it? The commonest solution that I
have seen to this kind of problem is to create something called a soak test. The soak test will run for
a bit longer than the normal time between failure, let’s say three weeks for our example. Sometimes
people will try to speed up time so that the soak will simulate the problem period in a shorter time,
but usually not.

The test runs, the system fails the test after two weeks, and the bug is, eventually, identified and
fixed.

Is there any alternative to this strategy? Well, yes!

Soak tests detect resource leaks of one form or another. There are two ways to detect leaks; you can
wait for the leak to become obvious, or you can increase the precision of your measurement so you
catch the leak early before it becomes catastrophic.

I had a leak in my kitchen recently. It was in a pipe, buried in concrete. We detected the leak once it
had soaked the concrete sufficiently for water to start to puddle on the surface. This is the “obvious”
detection strategy.

We got a professional in to help us fix the leak. He brought a tool, an engineered solution. It was a
highly sensitive microphone that “listened” for the sound of the leak underground.

Using this tool, he could detect the faint hiss of leaking water buried in concrete with sufficient,
super-human precision to allow him to identify the location within a few inches and dig a small
trench to get at the defective piece of pipe.

So back to our example: the engineering-focused team will use accurate measurement rather than
waiting for something bad to happen. They will measure the performance of their software to
detect leaks before they become a problem.

This approach has multiple benefits; it means that catastrophic failure, in production, is largely
avoided, but it also means that they can get an indication of a problem and valuable feedback
on the health of their system much, much sooner. Instead of running a soak test for weeks, the
engineering-focused team can detect leaks during regular testing of the system and get a result in a
matter of minutes. David Parnas said:

Software engineering is often treated as a branch of computer science. This is akin to regarding
chemical engineering as a branch of chemistry. We need both chemists and chemical engineers, but
they are different.

9780137314911_print.indb 23 06/10/21 5:26 PM

ptg36503484

24 Chapter 2 What Is Engineer ing?

Engineering, Creativity, and Craft
To think about engineering in general and software engineering specifically, I have been exploring
some of these ideas for a few years. I have spoken on this topic at software conferences and occa-
sionally written on this topic in blog posts.

I sometimes get feedback from people who are adherents to the ideas of software craftsmanship. This
feedback is usually of the form “You are missing something important in dismissing craftsmanship.”

The ideas of software craftsmanship were important. They represented an important step away from
the big-ceremony, production-centered approaches to software development that preceded them.
It is not my contention that software craftsmanship is wrong, but rather that it is not enough.

In part, these debates begin from an incorrect premise, one that I have already mentioned. Many of
these software craftspeople make the common mistake of assuming that all engineering is about
solving production problems. I have already covered that issue; if our problem is “design engineer-
ing,” then this is a very different, much more exploratory, creative discipline compared to “produc-
tion engineering.”

In addition, though, my software craftspeople interlocutors are concerned about the dangers of
throwing away the gains that software craftsmanship has brought—namely, a focus on the following:

• Skill

• Creativity

• Freedom to innovate

• Apprentice schemes

These things are important to any effective, professional approach to software development.
However, they are not limited to craft-based approaches. Software craftsmanship movement was an
important step in improving software development by refocusing on things that were important,
with the things in the previous list being some of those important things.

These ideas had become lost, or at least subsumed, by attempts through the 1980s and 1990s to
force-fit some kind of command-and-control, production-centered approach onto software devel-
opment. This was a terrible idea because although waterfall-style processes and thinking have a
place in problems where the steps are well understood, repeatable, and predictable, this bears little
or no relationship to the reality of software development.

Software craftsmanship was a much better fit for the type of problem that software development
really is.

The problem with craft-based solutions to problems is that they are not scalable in the way that
engineering-based solutions are.

Craft can produce good things, but only within certain bounds.

Engineering discipline in virtually all human endeavors increases quality, reduces costs, and gener-
ally provides more robust, resilient, and flexible solutions.

9780137314911_print.indb 24 06/10/21 5:26 PM

ptg36503484

25Why What We Do Is Not Sof t ware Engineer ing

It is a big mistake to associate ideas like skill, creativity, and innovation only with craft. Engineers in
general, but certainly design engineers, exhibit all of these qualities in abundance all of the time.
These attributes are central to the process of design engineering.

So taking an engineering approach to solving problems does not, in any way, reduce the impor-
tance of skill, creativity, and innovation. If anything, it amplifies the need for these attributes.

As for training, I wonder if my software crafty friends believe that a new graduate engineer leaving
university is immediately given responsibility to design a new bridge or a space shuttle? Of course not!

An engineer at the beginning of their career will work alongside more experienced engineers. They
will learn the practicalities of their discipline, their craft, maybe even more so than a craftsperson
would.

I see no tension here between craft and engineering. If you take the reasonably formal view of
craftsmanship, with guilds, apprentices, journeymen, and master craftsmen, then engineering really
was the next step on from that. As scientific rationalism took hold, following on from the enlighten-
ment thinking of the 17th and 18th centuries, engineering was really craft enhanced with a bit more
accuracy and measurement. Engineering is the more scalable, more effective offspring of craft.

If you take the more colloquial definitions of craft—think craft fair here—then there are no real
standards for quality or progress, so engineering is, perhaps, more of a jump.

Engineering, specifically the application of engineering thinking to design, is really the difference
between our high-tech civilization and the agrarian civilizations that preceded us. Engineering is
a discipline that allows us to undertake staggeringly complex problems and find elegant, efficient
solutions to them.

When we apply the principles of engineering thinking to software development, we see measur-
able, dramatic improvements in quality, productivity, and the applicability of our solutions.8

Why What We Do Is Not Software Engineering
In 2019, Elon Musk’s company SpaceX made a big decision; it was working on creating spacecraft
that will one day allow humans to live and work on Mars and explore other parts of the solar sys-
tem. In 2019, it switched from building its Starships out of carbon fiber to building them from
stainless steel instead. Carbon fiber was a pretty radical idea; they had done a lot of work, including
building prototype fuel tanks from the material. Stainless steel was also a radical choice; most rock-
ets are built from aluminum because of its lightness and strength.

The SpaceX choice of stainless steel over carbon fiber was based on three things: the cost per kilo-
gram was dramatically lower for steel; the high-temperature performance, to cope with re-entry
temperatures, was better than aluminum; the low-temperature, cryogenic performance was dra-
matically better than both of the alternatives.

8. Accelerate Book describes how teams that take a more disciplined approach to development spend “44%
more time on new work” than teams that don’t. See https://amzn.to/2YYf5Z8.

9780137314911_print.indb 25 06/10/21 5:26 PM

https://amzn.to/2YYf5Z8

ptg36503484

26 Chapter 2 What Is Engineer ing?

Carbon fiber and aluminum are significantly weaker than steel at very low and high temperatures.

When was the last time you heard anyone make a justification for a decision associated with soft-
ware creation that sounded even vaguely like that?

This is what engineering decisions look like. They are based on rational criteria, strength at a certain
temperature, or economic impact. It is still experimental, it is still iterative, it is still empirical.

You make a decision based on the evidence before you and your theory of what that will mean, and
then you test your ideas to see if they work. It is not some perfectly predictable process.

SpaceX built test structures and then pressurized them, first with water and then with liquid nitro-
gen, so that they could test the cryogenic performance of the materials (steel) and of their manufac-
turing process. Design engineering is a deeply exploratory approach to gaining knowledge.

Trade-Offs
All engineering is a game of optimization and trade-offs. We are trying to attempt to solve some
problem, and, inevitably, we will be faced with choices. In building their rockets, one of the big-
gest trade-offs for SpaceX is between strength and weight. This is a common problem for flying
machines, and actually for most vehicles.

Understanding the trade-offs that we face is a vital, fundamental aspect of engineering
decision-making.

If we make our system more secure, it will be more difficult to use; if we make it more distributed,
we will spend more time integrating the information that it gathers. If we add more people to speed
up development, we will increase the communication overhead, coupling, and complexity, all of
which will slow us down.

One of the key trade-offs that is vital to consider in the production of software, at every level of
granularity from whole enterprise systems to single functions, is coupling. (We will explore that in
much more detail in Chapter 13.)

The Illusion of Progress
The level of change in our industry is impressive, but my thesis is that much of this change is not
really significant.

As I write this, I am at a conference on the topic of serverless computing.9 The move to serverless
systems is an interesting one; however, the difference between the toolkits provided by AWS, Azure,
Google, or anyone else doesn’t really matter.

9. Serverless computing is a cloud-based approach to providing “functions as a service.” Functions form the only
unit of computing, and the code to run them is started up on demand.

9780137314911_print.indb 26 06/10/21 5:26 PM

ptg36503484

27The Journey f rom Craf t to Engineer ing

The decision to adopt a serverless approach is going to have some implications for the design of
your system. Where do you store state? Where do you manipulate it? How do you divide up the
functions of your system? How do you organize and navigate complex systems when the unit of
design is a function?

These questions are much more interesting and much more important to the success of your
endeavor, whatever it may be, than the detail of how you specify a function or how you use the
storage or security features of the platform. Yet nearly all of the presentations that I see on this topic
are about the tools, not the design of systems.

This is as if I was a carpenter and was being told the important differences between a slot-headed
screw and a cross-headed screw, but I was not being told what screws are useful for, when to use
them, and when to choose nails.

Serverless computing does represent a step forward as a computing model. I don’t question that.
This book is about the ideas that allow us to judge which ideas are important and which are not.

Serverless is important for several reasons, but principally because it encourages a more modular
approach to design with a better separation of concerns, particularly with respect to data.

Serverless computing changes the economics of systems by moving the calculation from “cost per
byte” to “cost per CPU cycle.” This means, or should mean, that we need to consider very different
kinds of optimizations.

Instead of optimizing our systems to minimize storage, by having normalized data stores, we should
probably be accepting a more genuinely distributed model of computing using non-normalized
stores and eventual-consistency patterns. These things matter because of their impact on the mod-
ularity of the systems that we create.

The tools matter only to the degree to which they “move the dial” on some more fundamental
things.

The Journey from Craft to Engineering
It is important not to dismiss the value of craft. The care and attention to detail are necessary to cre-
ate work of high quality. It is also important not to dismiss the importance of engineering to ampli-
fying the quality and effectiveness of the products of craft.

The first people to build a controllable, heavier-than-air, powered flying machine were the Wright
Brothers. They were excellent craftsmen and excellent engineers. Much of their work was based on
empirical discovery, but they also did real research into the effectiveness of their designs. As well
as being the first people to construct a flying machine, they were the first people to build a wind
tunnel to allow them to measure the effectiveness of their wing designs.

An airplane wing is a remarkable structure. The Wright brothers construction is a beautiful, though
by modern standards incredibly crude, device. It is built of wood and wire and covered in cloth
taughtened and made wind-proof by banana oil.

9780137314911_print.indb 27 06/10/21 5:26 PM

ptg36503484

28 Chapter 2 What Is Engineer ing?

It and the wind tunnel were used to evolve their understanding of the basics of a theory of aero-
dynamics, building on the work of earlier pioneers. However, primarily, the Wright Brothers’ flying
machine in general, and wing in particular, was built through a process of trial and error more than
pure theoretical design.

To modern eyes it looks like the product of craft more than engineering. This is partly, though not
wholly, true. Many people had tried craft-based approaches to building a “flying machine” and
failed. One of the important reasons for the success of the Wright Brothers was that they employed
engineering. They did the calculations and created and used the tools of measurement and
research. They controlled the variables so that they could deepen their understanding and refine
their model of flight. Then they created models and gliders and wind-tunnel pieces to test and then
grow their understanding. The principles that they established weren’t perfect, but they improved
on not just the practicalities, but also the theory.

By the time the Wright Brothers had achieved heavier-than-air-controllable-flight, their aerodynamic
research allowed them to build flying machines with an 8.3:1 glide ratio.10

To compare this with a modern airplane wing, say the wing of a modern sailplane: The wing of the
Wright Flyer was under-cambered (a slow high-lift airfoil), and it was heavy by modern standards,
though of light construction in its day. It used simple natural materials and achieved this 8.3:1.

Through engineering, empirical discovery, and experimentation, as well as materials science, refin-
ing of aerodynamic theory, computer modeling, and so on, a modern sailplane will have a carbon
fiber, high-aspect-ratio wing. It is optimized to be light and strong to the degree that you can clearly
see it bend and flex as it generates lift. It can achieve glide ratios of more than 70:1, nearly nine
times better than the Wright Flyer.

Craft Is Not Enough
Craft is important, particularly so if by craft you really mean creativity. Our discipline is a deeply creative
endeavor, but so is engineering. I believe that engineering is actually the height of human creativity
and ingenuity. That is the kind of thinking that we need if we aim to create great works in software.

Time for a Rethink?
The evolution of software engineering as a discipline has not really achieved what many people
hoped for. Software has changed, and is changing, the world. There have been some wonderful
pieces of work and innovative, interesting, and exciting systems built, but for many teams, organiza-
tions, and individual developers, it is not always clear how to succeed, or even how to make progress.

10. The glide ratio is one measure of the efficiency of a flying machine. The ratio is between distance traveled
and height lost. For example, for every foot (or meter) that the plane descends in a (unpowered) glide, it will
move forward 8.3 feet (or meters). See https://en.wikipedia.org/wiki/Lift-to-drag_ratio.

9780137314911_print.indb 28 06/10/21 5:26 PM

https://en.wikipedia.org/wiki/Lift-to-drag_ratio

ptg36503484

29Time for a Rethink?

Our industry is awash with philosophies, practices, processes, and technologies. There are religious
wars among technologists over the best programming languages, architectural approaches, devel-
opment processes, and tools. There often seems to be only a loose sense of what the objectives and
strategies of our profession are or should be.

Modern teams fight with schedule pressure, quality, and maintainability of their designs. They often
struggle to identify the ideas that really land with users, and they fail to allow themselves the time
to learn about the problem domain, the technology, and the opportunities to get something great
into production.

Organizations often struggle to get what they want out of software development. They often com-
plain about the quality and efficiency of development teams. They often misunderstand the things
that they can do to help overcome these difficulties.

Meanwhile, I perceive a fairly deep level of agreement among the experts, whose opinions I value,
about some fundamental ideas that are not often, or at least not clearly enough, stated.

Perhaps it is time to think again about what some of those fundamentals are. What are the prin-
ciples that are common to our discipline? What are the ideas that will be true for decades, not just
for the current generation of technical tools?

Software development is not a simple task, and it is not a homogeneous task. However, there are
some practices that are generic. There are ways of thinking about, managing, organizing, and prac-
ticing software development that have a significant, even dramatic, impact on all of these problem-
atic aspects of the endeavor.

The rest of this book is intended to explore some of these generic ideas and to provide a list of
foundational principles that should be common to all software development, whatever the problem
domain, whatever the tools, whatever the commercial or quality demands.

The ideas in this book seem to me to represent something deep, something fundamental, about the
nature of our endeavor.

When we get these things right, and many teams do, we see greater productivity, less stress and
burnout in team members, higher quality in design, and more resilience in the systems that we
create.

The systems that we build please their users more. We see dramatically fewer bugs in production,
and teams that employ these ideas find it significantly easier to change almost any aspect of the
systems that they work on as their learning evolves. The bottom-line result of this is usually greater
commercial success for the organizations that practice in this way. These attributes are the hallmarks
of engineering.

Engineering amplifies our ability to be creative, to make useful things, to proceed with confidence
and quality. It allows us to explore ideas and ultimately to scale our ability to create things so that
we can build ever bigger, more complex systems.

9780137314911_print.indb 29 06/10/21 5:26 PM

ptg36503484

30 Chapter 2 What Is Engineer ing?

We are at the birth of a genuine engineering discipline for software. We could, if we grasp this
opportunity, begin to change the way in which software development is practiced, organized, and
taught.

This may well be a generational change, but it is of such enormous value to the organizations that
employ us, and to the world in general, that we must try. What if we could build software more
quickly and more cost-effectively? What if that software was also higher quality, easier to maintain,
more adaptable, more resilient, and a better fit for the needs of its users?

Summary
In software we have somewhat redefined what engineering means. Certainly in some circles we have
come to see engineering as an unnecessary, onerous, and burdensome thing that gets in the way of
“real software development.” Real engineering in other disciplines is none of these things. Engineers
in other disciplines make progress more quickly, not less. They create work of higher quality, not
lower.

When we begin to adopt a practical, rational, lightweight, scientific approach to software develop-
ment, we see similar benefits. Software engineering will be specific to software, but it will also help
us to build better software faster, not get in the way of us doing that.

9780137314911_print.indb 30 06/10/21 5:26 PM

ptg36503484

31

Fundamentals of an Engineering Approach
Engineering in different disciplines varies. Bridge building is not the same as aerospace engineering,
and neither is it the same as electrical engineering or chemical engineering, but all of these disci-
plines share some common ideas. They are all firmly grounded in scientific rationalism and take a
pragmatic, empirical approach to making progress.

If we are to achieve our goal of trying to define a collection of long-lasting thoughts, ideas, prac-
tices, and behaviors that we could collectively group together under the name software engineering,
these ideas must be fairly fundamental to the reality of software development and robust in the
face of change.

An Industry of Change?

We talk a lot about change in our industry. We get excited about new technologies and new
products, but do these changes really “move the dial” on software development? Many of the
changes that exercise us don’t seem to make as much difference as we sometimes seem to think
that they will.

My favorite example of this was demonstrated in a lovely conference presentation by “Christin
Gorman.”1 In it, Christin demonstrates that when using the then popular open source object rela-
tional mapping library Hibernate, it was actually more code to write than the equivalent behavior
written in SQL, subjectively at least; the SQL was also easier to understand. Christin goes on to
amusingly contrast software development with making cakes. Do you make your cake with a cake
mix or choose fresh ingredients and make it from scratch?

1. Source: “Gordon Ramsay Doesn’t Use Cake Mixes” by Christin Gorman,https://bit.ly/3g02cWO

3

9780137314911_print.indb 31 06/10/21 5:26 PM

https://bit.ly/3g02cWO

ptg36503484

32 Chapter 3 Fundamentals of an Engineer ing Approach

Much of the change in our industry is ephemeral and does not improve things. Some, like in the
Hibernate example, actually make things worse.

My impression is that our industry struggles to learn and struggles to make progress. This relative
lack of advancement has been masked by the incredible progress that has been made in the
hardware on which our code runs.

I don’t mean to imply that there has been no progress in software—far from it—but I do believe
that the pace of progress is much slower than many of us think. Consider, for a moment, what
changes in your career have had a significant impact on the way in which you think about and
practice software development. What ideas made a difference to the quality, scale, or complexity of
the problems that you can solve?

The list is shorter than we usually assume.

For example, I have employed something like 15 or 20 different programming languages during
my professional career. Although I have preferences, only two changes in language have radically
changed how I think about software and design.

Those steps were the step from Assembler to C and the step from procedural to OO programming.
The individual languages are less important than the programming paradigm to my mind. Those
steps represented significant changes in the level of abstraction that I could deal with in writing
code. Each represented a step-change in the complexity of the systems that we could build.

When Fred Brooks wrote that there were no order-of-magnitude gains, he missed something. There
may not be any 10x gains, but there are certainly 10x losses.

I have seen organizations that were hamstrung by their approach to software development,
sometimes by technology, more often by process. I once consulted in a large organization that
hadn’t released any software into production for more than five years.

We not only seem to find it difficult to learn new ideas; we seem to find it almost impossible to
discard old ideas, however discredited they may have become.

The Importance of Measurement

One of the reasons that we find it difficult to discard bad ideas is that we don’t really measure our
performance in software development very effectively.

Most metrics applied to software development are either irrelevant (velocity) or sometimes
positively harmful (lines of code or test coverage).

In agile development circles it has been a long-held view that measurement of software team, or
project performance, is not possible. Martin Fowler wrote about one aspect of this in his widely read
Bliki in 2003.2

2. Source: “Cannot Measure Productivity” by Martin Fowler,https://bit.ly/3mDO2fB

9780137314911_print.indb 32 06/10/21 5:26 PM

https://bit.ly/3mDO2fB

ptg36503484

33The I mpor tance of Measurement

Fowler’s point is correct; we don’t have a defensible measure for productivity, but that is not the
same as saying that we can’t measure anything useful.

The valuable work carried out by Nicole Fosgren, Jez Humble, and Gene Kim in the “State of
DevOps” reports3 and in their book Accelerate: The Science of Lean Software & DevOps4 represents
an important step forward in being able to make stronger, more evidence-based decisions. They
present an interesting and compelling model for the useful measurement of the performance of
software teams.

Interestingly, they don’t attempt to measure productivity; rather, they evaluate the effectiveness of
software development teams based on two key attributes. The measures are then used as a part of a
predictive model. They cannot prove that these measures have a causal relationship with the perfor-
mance of software development teams, but they can demonstrate a statistical correlation.

The measures are stability and throughput. Teams with high stability and high throughput
are classified as “high performers,” while teams with low scores against these measures are “low
performers.”

The interesting part is that if you analyze the activities of these high- and low-performing groups,
they are consistently correlated. High-performing teams share common behaviors. Equally, if we
look at the activities and behaviors of a team, we can predict their score, against these measures,
and it too is correlated. Some activities can be used to predict performance on this scale.

For example, if your team employs test automation, trunk-based development, deployment
automation, and about ten other practices, their model predicts that you will be practicing
continuous delivery. If you practice continuous delivery, the model predicts that you will be “high
performing” in terms of software delivery performance and organizational performance.

Alternatively, if we look at organizations that are seen as high performers, then there are common
behaviors, such as continuous delivery and being organized into small teams, that they share.

Measures of stability and throughput, then, give us a model that we can use to predict team
outcomes.

Stability and throughput are each tracked by two measures.

Stability is tracked by the following:

• Change Failure Rate: The rate at which a change introduces a defect at a particular point in
the process

• Recovery Failure Time: How long to recover from a failure at a particular point in the process

3. Source: Nicole Fosgren, Jez Humble, Gene Kim, https://bit.ly/2PWyjw7

4. The Accelerate Book describes how teams that take a more disciplined approach to development spend “44%
more time on new work” than teams that don’t. See https://amzn.to/2YYf5Z8.

9780137314911_print.indb 33 06/10/21 5:26 PM

https://bit.ly/2PWyjw7
https://amzn.to/2YYf5Z8

ptg36503484

34 Chapter 3 Fundamentals of an Engineer ing Approach

Measuring stability is important because it is really a measure of the quality of work done. It doesn’t
say anything about whether the team is building the right things, but it does measure that their
effectiveness in delivering software with measurable quality.

 Throughput is tracked by the following:

• Lead Time: A measure of the efficiency of the development process. How long for a single-line
change to go from “idea” to “working software”?

• Frequency: A measure of speed. How often are changes deployed into production?

Throughput is a measure of a team’s efficiency at delivering ideas, in the form of working software.

How long does it take to get a change into the hands of users, and how often is that achieved? This
is, among other things, an indication of a team’s opportunities to learn. A team may not take those
opportunities, but without a good score in throughput, any team’s chance of learning is reduced.

These are technical measures of our development approach. They answer the questions “what is the
quality of our work?” and “how efficiently can we produce work of that quality?”

These are meaningful ideas, but they leave some gaps. They don’t say anything about whether we
are building the right things, only if we are building them right, but just because they aren’t perfect
does not diminish their utility.

Interestingly, the correlative model that I described goes further than predicting team size and
whether you are applying continuous delivery. The Accelerate authors have data that shows
significant correlations with much more important things.

For example, organizations made up of high-performing teams, based on this model, make
more money than orgs that don’t. Here is data that says that there is a correlation between a
development approach and the commercial outcome for the company that practices it.

It also goes on to dispel a commonly held belief that “you can have either speed or quality but not
both.” This is simply not true. Speed and quality are clearly correlated in the data from this research.
The route to speed is high-quality software, the route to high-quality software is speed of feedback,
and the route to both is great engineering.

Applying Stability and Throughput
The correlation of good scores in these measures with high-quality results is important. It offers us
an opportunity to use them to evaluate changes to our process, organization, culture, or technology.

Imagine, for example, that we are concerned with the quality of our software. How could we
improve it? We could decide to make a change to our process. Let us add a change approval
board (CAB).

9780137314911_print.indb 34 06/10/21 5:26 PM

ptg36503484

35Applying Stabi l i t y and Throughput

Clearly the addition of extra review and sign-offs are going to adversely impact on throughput, and
such changes will inevitably slow down the process. However, do they increase stability?

For this particular example the data is in. Perhaps surprisingly, change approval boards don’t
improve stability. However, the slowing down of the process does impact stability adversely.

We found that external approvals were negatively correlated with lead-time, deployment frequency,
and restore-time, and had no correlation with change fail rate. In short, approval by an external body
(such as a manager or CAB) simply doesn’t work to increase the stability of production systems, mea-
sured by time to restore service and change fail rate. However, it certainly slows things down. It is, in
fact, worse than having no change approval process at all.5

My real point here is not to poke fun at change approval boards, but rather to show the importance
of making decisions based on evidence rather than guesswork.

It is not obvious that CABs are a bad idea. They sound sensible, and in reality that is how many,
probably most, organizations try to manage quality. The trouble is that it doesn’t work.

Without effective measurement, we can’t tell that it doesn’t work; we can only make guesses.

If we are to start applying a more evidence-based, scientifically rational approach to decision-
making, you shouldn’t take my word, or the word of Forsgren and her co-authors, on this or
anything else.

Instead, you could make this measurement for yourself, in your team. Measure the throughput and
stability of your existing approach, whatever that may be. Make a change, whatever that may be.
Does the change move the dial on either of these measures?

You can read more about this correlative model in the excellent Accelerate book. It describes the
approach to measurement and the model that is evolving as research continues. My point here is
not to duplicate those ideas, but to point out the important, maybe even profound, impact that this
should have on our industry. We finally have a useful measuring stick.

We can use this model of stability and throughput to measure the effect of any change.

We can see the impact of changes in organization, process, culture, and technology. “If I adopt this
new language, does it increase my throughput or stability?”

We can also use these measures to evaluate different parts of our process. “If I have a significant
amount of manual testing, it is certainly going to be slower than automated testing, but does it
improve stability?”

We still have to think carefully. We need to consider the meaning of the results. What does it mean if
something reduces throughput but increases stability?

Nevertheless, having meaningful measures that allow us to evaluate actions is important, even vital,
to taking a more evidence-based approach to decision-making.

5. Accelerate by Nicole Forsgren, Jez Humble, and Gene Kim, 2018

9780137314911_print.indb 35 06/10/21 5:26 PM

ptg36503484

36 Chapter 3 Fundamentals of an Engineer ing Approach

The Foundations of a Software Engineering Discipline
So, what are some of these foundational ideas? What are the ideas that we could expect to be
correct in 100 years’ time and applicable whatever our problem and whatever our technology?

There are two categories: process, or maybe even philosophical approach, and technique or design.

More simply, our discipline should focus on two core competencies.

We should become experts at learning. We should recognize and accept that our discipline is a
creative design discipline and has no meaningful relationship to production-engineering and
instead focus on mastery of the skills of exploration, discovery, and learning. This is a practical
application of a scientific style of reasoning.

We also need to focus on improving our skills in managing complexity. We build systems that don’t
fit into our heads. We build systems on a large scale with large groups of people working on them.
We need to become expert at managing complexity to cope with this, both at the technical level
and at the organizational level.

Experts at Learning
Science is humanity’s best problem-solving technique. If we are to become experts at learning, we
need to adopt and become skilled at the kind of practical science-informed approach to problem-
solving that is the essence of other engineering disciplines.

It must be tailored to our problems. Software engineering will be different from other forms of
engineering, specific to software, in the same way that aerospace engineering is different from
chemical engineering. It needs to be practical, light weight, and pervasive in our approach to
solving problems in software.

There is considerable consensus among people who many of us consider to be thought leaders in
our industry on this topic. Despite being well known, these ideas are not currently universally or
even widely practiced as the foundations of how we approach much of software development.

There are five linked behaviors in this category:

• Working iteratively

• Employing fast, high-quality feedback

• Working incrementally

• Being experimental

• Being empirical

If you have not thought about this before, these five practices may seem abstract and rather
divorced from the day-to-day activities of software development, let alone software engineering.

9780137314911_print.indb 36 06/10/21 5:26 PM

ptg36503484

37Exper ts at Managing Complexit y

Software development is an exercise in exploration and discovery. We are always trying to learn
more about what our customers or users want from the system, how to better solve the problems
presented to us, and how to better apply the tools and techniques at our disposal.

We learn that we have missed something and have to fix things. We learn how to organize ourselves
to work better, and we learn to more deeply understand the problems that we are working on.

Learning is at the heart of everything that we do. These practices are the foundations of any
effective approach to software development, but they also rule out some less effective approaches.

Waterfall development approaches don’t exhibit these properties, for example. Nevertheless, these
behaviors are all correlated with high performance in software development teams and have been
the hallmarks of successful teams for decades.

Part II explores each of these ideas in more depth from a practical perspective: How do we become
experts at learning, and how do we apply that to our daily work?

Experts at Managing Complexity

As a software developer, I see the world through the lens of software development. As a result, my
perception of the failures in software development and the culture that surrounds it can largely be
thought of in terms of two information science ideas: concurrency and coupling.

These are difficult in general, not just in software design. So, these ideas leak out from the design of
our systems and affect the ways in which the organizations in which we work operate.

You can explain this with ideas like Conway’s law,6 but Conway’s law is more like an emergent
property of these deeper truths.

You can profitably think of this in more technical terms. A human organization is just as much an
information system as any computer system. It is almost certainly more complex, but the same
fundamental ideas apply. Things that are fundamentally difficult, like concurrency and coupling, are
difficult in the real world of people, too.

If we want to build systems any more complex than the simplest of toy programming exercises, we
need to take these ideas seriously. We need to manage the complexity of the systems that we create
as we create them, and if we want to do this at any kind of scale beyond the scope of a single, small
team, we need to manage the complexity of the organizational information systems as well as the
more technical software information systems.

As an industry, it is my impression that we pay too little attention to these ideas, so much so that all
of us who have spent any time around software are familiar with the results: big-ball-of-mud sys-
tems, out-of-control technical debt, crippling bug counts, and organizations afraid to make changes
to the systems that they own.

6. In 1967, Mervin Conway observed that “Any organization that designs a system (defined broadly) will produce
a design whose structure is a copy of the organization’s communication structure.” Seehttps://bit.ly/3s2KZP2.

9780137314911_print.indb 37 06/10/21 5:26 PM

https://bit.ly/3s2KZP2

ptg36503484

38 Chapter 3 Fundamentals of an Engineer ing Approach

I perceive all of these as a symptom of teams that have lost control of the complexity of the systems
that they are working on.

If you are working on a simple, throwaway software system, then the quality of its design matters
little. If you want to build something more complex, then you must divide the problem up so that
you can think about parts of it without becoming overwhelmed by the complexity.

Where you draw those lines depends on a lot of variables: the nature of the problem that you are
solving, the technologies that you are employing, and probably even how smart you are, to some
extent, but you must draw the lines if you want to solve harder problems.

Immediately as you buy in to this idea, we are talking about ideas that have a big impact in terms of
the design and architecture of the systems that we create. I was a little wary, in the previous para-
graph, of mentioning “smartness” as a parameter, but it is one. The problem that I was wary of is that
most of us overestimate our abilities to solve a problem in code.

This is one of the many lessons that we can learn from an informal take on science. It’s best to start
off assuming that our ideas are wrong and work to that assumption. So we should be much more
wary about the potential explosion of complexity in the systems that we create and work to man-
age it diligently and with care as we make progress.

There are five ideas in this category, too. These ideas are closely related to one another and linked to
the ideas involved in becoming experts at learning. Nevertheless, these five ideas are worth think-
ing about if we are to manage complexity in a structured way for any information system:

• Modularity

• Cohesion

• Separation of concerns

• Information hiding/abstraction

• Coupling

We will explore each of these ideas in much more depth in Part III.

Summary
The tools of our trade are often not really what we think they are. The languages, tools, and frame-
works that we use change over time and from project to project. The ideas that facilitate our learn-
ing and allow us to deal with the complexity of the systems that we create are the real tools of our
trade. By focusing on these things, it will help us to better choose the languages, wield the tools,
and apply the frameworks in ways that help us do a more effective job of solving problems with
software.

9780137314911_print.indb 38 06/10/21 5:26 PM

ptg36503484

39Summar y

Having a “yardstick” that allows us to evaluate these things is an enormous advantage if we want
to make decisions based on evidence and data, rather than fashion or guesswork. When making a
choice, we should ask ourselves, “does this increase the quality of the software that we create?” mea-
sured by the metrics of stability. Or “does this increase the efficiency with which we create software
of that quality” measured by throughput. If it doesn’t make either of these things worse, we can
pick what we prefer; otherwise, why would we choose to do something that makes either of these
things worse?

9780137314911_print.indb 39 06/10/21 5:26 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

II
OPTIMIZE FOR LEARNING

9780137314911_print.indb 41 06/10/21 5:26 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

43

Working Iteratively
Iteration is defined as “a procedure in which repetition of a sequence of operations yields results
successively closer to a desired result.”1

Fundamentally, iteration is a procedure that drives learning. Iteration allows us to learn, react, and
adapt to what we have learned. Without iteration, and the closely related activity of collecting feed-
back, there is no opportunity to learn on an ongoing basis. Fundamentally, iteration allows us to
make mistakes and to correct them, or make advances and enhance them.

This definition also reminds us that iteration allows us to progressively approach some goal. Its real
power is that it allows us to do this even when we don’t really know how to approach our goals. As
long as we have some way of telling whether we are closer to, or further from, our goal, we could
even iterate randomly and still achieve our goal. We can discard the steps that take us further away
and prefer the steps that move us nearer. This is in essence how evolution works. It is also at the
heart of how modern machine learning (ML) works.

1. Source: Merriam Webster Dictionary, https://www.merriam-webster.com/dictionary/iteration

4

9780137314911_print.indb 43 06/10/21 5:26 PM

https://www.merriam-webster.com/dictionary/iteration

ptg36503484

44 Chapter 4 Work ing I terat ively

The Agile Revolution

Teams were practicing more iterative, feedback-driven approaches to development from at
least the 1960s. However, following a famous meeting of leading thinkers and practitioners,
at a ski resort in Colorado, the Agile Manifesto outlined a shared philosophy that underpinned
these more flexible, learning-centered strategies in contrast to the more heavyweight processes
common at the time.

The Agile Manifesto2 is a simple document. It is 9 lines of text and 12 principles, but it had a big
impact.

Before this, the conventional wisdom, with a few quiet dissenters, was that if you were doing
anything “serious” in software, then you needed the production-centered techniques of water-
fall development.

Agile thinking took a while to break through, but now it, and not waterfall, is the predominant
approach, at least in terms of thinking.

However, most organizations are still, at heat, culturally dominated by waterfall thinking at the
organizational level, if not also at the technical level.

Nevertheless, agile thinking is built upon significantly more stable foundations than the ideas
that went before it. At its heart, the phrase that best captures the ideas, maybe ideals, of the
agile community is “inspect and adapt.”

This change in perception is significant, but not enough. Why was this step significant? Because
it represents a step in the direction of perceiving software development as a learning exercise
rather than a production problem. Waterfall processes can be effective for some kinds of pro-
duction problems, but they are an extremely poor fit for problems that involve exploration.

This step is important because although Fred Brooks’ 10x step does not appear to be available
in terms of technology, tooling, or process, there are some approaches that are so inefficient
that improving them by an order of magnitude is perfectly possible. Waterfall, when applied to
software development, is such a candidate.

Waterfall-style thinking starts from the assumption that “if we only think/work hard enough, we
can get things right at the beginning.”

Agile thinking inverts this. It starts from the assumption that we will inevitably get things
wrong. “We won’t understand what the users want,” “we won’t get the design right straight
away,” “we won’t know if we have caught all the bugs in the code that we wrote,” and so on and
so on. Because they start off assuming that they will make mistakes, agile teams work in a way
that, quite intentionally, mitigates the cost of mistakes.

2. The Agile Manifesto, https://agilemanifesto.org/

9780137314911_print.indb 44 06/10/21 5:26 PM

https://agilemanifesto.org/

ptg36503484

45Prac t ical Advantages of Work ing I terat ively

Working iteratively is different in some fundamental ways than working in a more planned,
sequential approach. It is, though, a significantly more effective strategy.

To many readers, this may seem obvious, but it is not. Much of the history of software development
was spent assuming that iteration was unnecessary and that a detailed plan of all the steps was the
goal of the early stages of software development.

Iteration is at the heart of all exploratory learning and is fundamental to any real knowledge
acquisition.

Practical Advantages of Working Iteratively
If we approach software engineering as an exercise in discovery and learning, iteration must be at
its heart. However, a variety of other advantages to working iteratively may not be evident at first.

Perhaps the most important idea is that if we start to change our working practices to work more
iteratively, it automatically narrows our focus and encourages us to think in smaller batches and to
take modularity and separation of concerns more seriously. These ideas start out as a natural con-
sequence of working more iteratively, but end up being part of a virtuous circle that enhances the
quality of our work.

One of the common ideas from both Scrum and Extreme Programming (XP) was that we should
work on small units of work to completion. The agile thought process was, “Progress in software
development is hard to measure, but we can measure finished features, so let’s work on smaller fea-
tures so that we can see when they are finished.”

This reduction in batch size was a big step forward. However, it gets complicated when you want
to know how long it will take to “finish.” This iterative approach to development is different from

Agile thinking shares this idea with science. Approaching ideas from a skeptical perspective and
looking to prove ideas wrong, rather than prove them right (“falsifiability”), are inherent to a
more scientific mindset.

These two schools of thought, predictability versus exploration, promote quite radically
different, incompatible approaches to project organization and team practice.

Based on the assumptions of agile thinking, we will approach the organization of our teams,
processes, and technology to allow us to safely get things wrong, easily observe the mistake,
make a change, and, ideally, do better next time.

Arguments over Scrum versus Extreme Programming or continuous integration versus feature
branching or TDD versus skilled developers thinking hard, or anything else, are irrelevant. At its
heart, any truly agile process is an exercise in “empirical process control.”

This is a significantly better fit for software development, of any kind, than the production-
centered, prediction-based waterfall approach that preceded it.

9780137314911_print.indb 45 06/10/21 5:26 PM

ptg36503484

46 Chapter 4 Work ing I terat ively

more traditional ways of thinking. For example, in continuous delivery we work so that every small
change, multiple times per day, is releasable. It should be finished to the degree that we can safely
and reliably release our software into production at any point. So what does “finished” really mean
in that context?

Each change is finished because it is releasable, so the only sensible measure of “finished” is that
it delivers some value to its users. That is a very subjective thing. How do we predict how many
changes are needed to represent “value” to our users? What most organizations do is to guess at a
collection of features that, in combination, represent “value,” but if I can release at any point in the
life of my software, this is a somewhat blurry concept.

There is a problem with guessing the set of changes that constitute “value,” because it depends on
the assumption that you know all of the features that you need when you start and can determine
progress toward some idea of “completeness.” This is an over-simplification of what the founders of
the agile movement meant, but it is an assumption that most traditional organizations, making the
transition to agile planning, have made.

One of the more subtle advantages of working iteratively is that we have a choice. We could iterate
on the products that we create and steer them, based on good feedback from our customers and
users, toward higher-value outcomes. This is one of the more valuable aspects of this way of work-
ing that is often missed by more traditional organizations that attempt to adopt it.

Nevertheless, whatever the intent or the outcome, this small batch–based approach did encourage
us, as an industry, to reduce the size and complexity of the features that we would work on, and
that is a really important step.

Agile planning depended, to a significant degree, on decomposing work into small enough pieces
that we could complete our features within a single sprint, or iteration. Initially this was promoted
as a way of measuring progress, but it had the much more profound impact of delivering definitive
feedback on the quality and appropriateness of our work on a regular basis. This change increases
the rate at which we can learn. Does this design work? Do our users like this feature? Is the system
fast enough? Have I eliminated all of the bugs? Is my code nice to work in? and so on.

Working iteratively in small, definitive, and production-ready steps provides us with great feedback!

Iteration as a Defensive Design Strategy
Working iteratively encourages us to take a defensive approach to design. (We discuss the details of
this in more depth in Part III.)

An interesting take on the foundations of agile thinking was first presented to me by my friend, Dan
North. Dan described the difference between waterfall and agile thinking as, effectively, a problem in
economics. Waterfall thinking is promulgated on the assumption that change gets more expensive as
time goes on. It classically talks about the Cost of Change model, as represented in Figure 4.1.

9780137314911_print.indb 46 06/10/21 5:26 PM

ptg36503484

47I terat ion as a Defensive Design Strategy

C
os

t

Time

Figure 4.1
The classical cost of change

This worldview is problematic. It means that if this model is correct, the only sensible solution is to
make the most important decisions early in the life of a project. The difficulty with this is that early
in the life of a project, we know the least that we will ever know about it. So we are making crucial
decisions in the life of a project based on ill-informed guesses, however hard we work at this point
to inform them.

Software development never begins with “…every piece of work being completely understood,” no
matter how hard we analyze things before starting work. Given that we never begin with a “well-
defined set of inputs,” no matter how diligently we plan, the defined process model, or waterfall
approach, falls at the first hurdle. It is impossible to make software development fit this inappropri-
ate mold.

Surprises, misunderstandings, and mistakes are normal in software development because it is an
exercise in exploration and discovery, so we need to focus on learning to protect ourselves from the
missteps that we will inevitably make along the way.

Dan North’s alternate view was this: given that the classic Cost of Change model clearly doesn’t help
us, what would? How much nicer would it be if we could flatten the Cost of Change curve? (See
Figure 4.2.)

What if we could change our minds, discover new ideas, discover errors, and fix them, all at roughly
the same cost whenever that happened? What if the Cost of Change curve was flat?

It would give us the freedom to discover new things and benefit from our discoveries. It would
allow us to adopt an approach that would allow us to continuously improve our understanding, our
code, and our user’s experience of our products.

9780137314911_print.indb 47 06/10/21 5:26 PM

ptg36503484

48 Chapter 4 Work ing I terat ively

C
os

t

Time

Figure 4.2
The agile cost of change

So, what would it take to achieve a flat Cost of Change curve?

We can’t afford to spend lots of time in analysis and design without creating anything, because that
means more time not learning what really works. So we need to compress things. We need to work
iteratively. We need to do just enough analysis, design, coding, testing, and releasing to get our
ideas out into the hands of our customers and users so that we can see what really works. We need
to reflect on that and then, given that learning, adapt what we do next to take advantage of it.

This is one of the ideas at the heart of continuous delivery (see Figure 4.3).

Design

Develop

Test

Release

Theo
ry

Theo
ry

Pre
dict

io
n Pre

dict
io

n

Exp
er

im
en

t

Exp
er

im
en

t

Obse
rv

at
io

n
Obse

rv
at

io
n

Cycle-Time

Figure 4.3
Iteration in continuous delivery

The Lure of the Plan
The people who promoted waterfall thinking were well intentioned. They thought that it was the
best way forward. Our industry has spent decades trying to make this approach work, and it doesn’t.

The difficulty here is that a waterfall approach sounds very sensible: “Think carefully before you
start,” and “Plan carefully what you are going to do and then execute the plan diligently.” Based on
our industrial-age experience, these ideas make a lot of sense. If you have a well-defined process,
this defined process control approach works extremely well.

9780137314911_print.indb 48 06/10/21 5:26 PM

ptg36503484

49The Lure of the Plan

When making physical things, the problems of production engineering and the problems of scaling
up often outweigh the problems of design. However, this is changing now even in the manufacture
of physical things. As manufacturing gets more flexible and some manufacturing plants can change
direction, then even in manufacturing this kind of rigid process has been challenged and over-
turned. This kind of “production-line” thinking dominated most organizations for at least a century,
though, and we are somewhat programmed to think about problems this way.

It takes a difficult intellectual leap to recognize that the paradigm in which you are operating is fun-
damentally the wrong one. This is even more true when the whole world assumes that paradigm to
be correct.

Process Wars

If there is no 10x improvement available from language, formalism, or diagramming, where else
can we look?

The way in which we organize ourselves and our approach to the skills and techniques of
learning and discovery that seem so inherent to our discipline seem like a fruitful avenue to
explore.

In the early days of software development, the early programmers were usually highly edu-
cated in mathematics, science, or engineering. They worked as individuals or in small groups
to develop systems. These people were explorers in a new domain, and like most explorers,
they brought their experience and prejudices along with them. Early approaches to software
development were often very mathematical.

As the computer revolution kicked in and software development became more ubiquitous,
demand rapidly outstripped supply. We needed to produce more, better software faster! So we
started looking at other industries to try to copy how they coped with working efficiently at
scale.

This is where we made the horrible mistake of misunderstanding the fundamental nature of
software development and misapplied techniques from manufacturing and production. We
recruited armies of developers and tried to create the software equivalent of mass-production
lines.

The people who did this were not stupid, but they did make a big mistake. The problem is
multifaceted. Software is complex stuff, and the process of its creation bears no real relationship
to a traditional “production problem,” which is how most people seem to have thought about it.

Initial attempts at industrializing our discipline were painful, pervasive, and very damaging.
It resulted in the creation of a lot of software, but much of it was problematic. It was slow,
inefficient, late, did not deliver what our users wanted, and was extremely difficult to maintain.
Through the 1980s and 1990s software development exploded as a discipline, and so did the
complexity of the processes applied to it in many large organizations.

9780137314911_print.indb 49 06/10/21 5:26 PM

ptg36503484

50 Chapter 4 Work ing I terat ively

These failings were despite the fact that many aspects of this problem were well understood by
leading thinkers in the discipline.

The Mythical Man Month by Fred Brooks, again, described these problems and how to avoid
them in some detail in 1970. If you have never read this seminal work in our discipline, you
would probably be surprised at how accurately it describes the problems that you, most likely,
face nearly every day in your work as a software developer. This despite the fact that it is based
on Brooks’s experience of developing the operating system for the IBM 360 mainframe com-
puter in the late 1960s using the comparatively crude technology and tools of the day. Brooks
was, yet again, touching on something more important and more fundamental than language,
tools, or technology.

During this period many teams produced great software, often completely ignoring the then
current “wisdom” of how projects should be planned and managed. There were some common
themes in these teams. They tended to be small. The developers were close to the users of their
software. They tried ideas quickly and changed tack when things didn’t work as they expected.
This was revolutionary stuff during this period—so revolutionary in fact that many of these
teams essentially operated in stealth mode, where the organization where they worked applied
heavy-weight processes that slowed them down.

By the late 1990s, in reaction to these heavyweight processes, some people began to try to
define strategies that were more effective. Several different competing approaches to software
development were gaining in popularity. Crystal, Scrum, Extreme Programming, and several
others tried to capture this very different approach. These viewpoints were formalized into the
Agile Manifesto.

In software, it took the agile revolution to overthrow that norm, but even today many, perhaps even
most, organizations at heart remain plan/waterfall-driven.

In addition to the difficulty of recognizing the problem, there remains a fair bit of wishful thinking in
organizations that cling to waterfall-style planning. It would be lovely if an organization could:

• Correctly identify its users’ needs

• Accurately assess the value to the organization if those needs were met

• Accurately estimate how much it would cost to fulfill those needs

• Make a rational decision on whether the benefit outweighed the cost

• Make an accurate plan

• Execute the plan without deviation

• Count the money at the end

The trouble is that this is not credible either at the business level or at a technical level. The real
world, and software development within it, just doesn’t work like this.

9780137314911_print.indb 50 06/10/21 5:26 PM

ptg36503484

51The Lure of the Plan

Industry data says that for the best software companies in the world, two-thirds of their ideas
produce zero or negative value.3 We are terrible at guessing what our users want. Even when we
ask our users, they don’t know what they want either. The most effective approach is to iterate. It is
accepting that some, maybe even many, of our ideas will be wrong and work in a way that allows us
to try them out as quickly, cheaply, and efficiently as possible.

Assessing the business value of an idea is notoriously difficult, too. There is a famous quote from
IBM president Thomas J. Watson, who once predicted that the world demand for computers would
one day get as high as five!

This is not a technology problem; this is a human-limitation problem. To make progress we must
take a chance, make a guess, be willing to take a risk. We are very bad at guessing, though. So to
make progress most efficiently, we must organize ourselves so that our guesses won’t destroy us.
We need to work more carefully, more defensively. We need to proceed in small steps and limit the
scope, or blast radius, of our guesses and learn from them. We need to work iteratively!

Once we have an idea that we would like to execute on, we need to find a way to decide when to
stop. How do we call a halt on a bad idea? Once we have decided that the idea is worth the risk of
attempting it, how do we limit that blast radius in a way that means that we don’t lose everything
on a terrible idea? We need to be able to spot the bad ideas as soon as we can. If we can elimi-
nate the bad ideas just by thinking about it, great. However, many ideas aren’t that obviously bad.
Success is a slippery concept. An idea may even be a good idea, but may be let down by bad timing
or poor execution.

We need to find a way to try our ideas with minimum cost, so that if it is bad, we can find that out
quickly and at relatively low cost. A 2012 survey of software projects carried out by the McKinsey
Group in association with Oxford University found that 17% of large projects (budgets over $15M)
went so badly that they threatened the existence of the company that undertook them. How can
we identify these bad ideas? If we work in small steps, get real reaction to the progress or otherwise,
and constantly validate and review our ideas, we can see soonest, with lowest investment, when
things start to work differently to our hopes and plans. If we work iteratively in small steps, the cost
of any single step going wrong is inevitably lower; therefore, the level of this risk is reduced.

In “The Beginning of Infinity,” David Deutsch describes the profound difference between ideas that
are limited in scope and ideas that are not. The comparison of a planned, waterfall, defined-process
approach and an iterative, exploratory, experimental approach is a comparison between two such
fundamentally different ideas. Defined process control models4 require a “defined process.” By defi-
nition this is finite in scope. At the limit of such an approach, there is, at some level, the capacity of a
human brain to hold the detail of the entire process. We can be smart and use ideas like abstraction

3. Source: “Online Controlled Experiments at Large Scale,”https://stanford.io/2LdjvmC

4. Ken Schwaber described waterfall as a “defined process control model” that he defined as: “The defined
process control model requires that every piece of work be completely understood. Given a well-defined set
of inputs, the same outputs are generated every time. A defined process can be started and allowed to run
until completion, with the same results every time.” Schwaber compares this to the “empirical process control
model” represented by an agile approach. See https://bit.ly/2UiaZdS.

9780137314911_print.indb 51 06/10/21 5:26 PM

https://stanford.io/2LdjvmC
https://bit.ly/2UiaZdS

ptg36503484

52 Chapter 4 Work ing I terat ively

and concepts like modularity to hide some of the detail, but ultimately defining the process end to
end in some kind of plan requires us to have covered everything that will happen. This is an inher-
ently limited approach to solving problems. We can only solve the problems that we can under-
stand up front.

An iterative approach is very different. We can begin when we know almost nothing and yet still
make useful progress. We can start with some simple, understandable facet of the system. Use this
to explore how our team should work on it, try out our first thoughts on the architecture of our sys-
tem, try out some technologies that we think might be promising, and so on. None of these things
is necessarily fixed. We have still made progress even if we found that the tech was a bad idea and
our first concept of the architecture was wrong. We now know better than we did before. This is an
inherently open-ended, infinite process. As long as we have some kind of “fitness function,” a way of
telling if we are heading toward our goal or away from it, we can continue in this vein forever, refin-
ing, enhancing, and improving our understanding, our ideas, our skills, and our products. We can
even decide to change our “fitness function” along the way if we decide that there are better goals
to aim for.

A Beginning of Infinity

In his mind-expanding book The Beginning of Infinity, physicist David Deutsch describes science
and the enlightenment as the quest for “good explanations” and explains how various ideas in
human history represent a “beginning of infinity” that allow us to cope with any conceivable
relevant application of these good explanations.

A good example of this is the difference between an alphabet and a pictographic form of
writing.

Humans began with the pictographic forms of writing, and Chinese and Japanese writing still
take this form (for some writing styles). These are beautiful to look at, but they have a serious
flaw. If you come across a word that is new to you, you hear it spoken; you can’t write it down
until you get someone else to tell you how. Pictographic forms of writing are not really incre-
mental; you have to know the correct symbol for each word. (There are approximately 50,000
characters in Chinese writing.)

An alphabet works in a profoundly different way. Alphabets encode sounds, not words. You can
spell any word, maybe incorrectly, in a way that anyone can, at least phonetically, understand
what you wrote.

This is true even if you have never heard the word spoken or seen it written before.

Equally you can read a word that you don’t know. You can even read words that you don’t
understand or don’t know how to pronounce. You can’t do either of these things with picto-
graphic writing. This means that the range of an alphabetic approach to writing is infinite, and
a pictographic one is not. One is a scalable approach to representing ideas; the other is not.

9780137314911_print.indb 52 06/10/21 5:26 PM

ptg36503484

53The Lure of the Plan

This idea of infinite reach or scope is true of an agile approach to development and not true of a
waterfall-based approach.

A waterfall approach is sequential. You must answer the questions of the stage that you are
in before proceeding to the next stage. This means that however clever we are, there must, at
some point, be a limit at which the complexity of the system as a whole goes beyond human
understanding.

Human mental capacity is finite, but our capacity to understand is not necessarily so. We can
address the physiological limits of our brains by using techniques that we have evolved and
developed. We can abstract things, and we can compartmentalize (modularize) our thinking
and so scale our understanding to a remarkable degree.

An agile approach to software development actively encourages us to start work on solving
problems in smaller pieces. It encourages us to begin work before we know the answer to
everything. This approach allows us to make progress, maybe sometimes in suboptimal or even
bad directions, but nevertheless, after each step, we learn something new.

This allows us to refine our thinking, identify the next small step, and then take that step. Agile
development is an unbounded, infinite approach because we work on small pieces of the prob-
lem before moving forward from a known and understood position. This is a profoundly more
organic, evolutionary, unbounded approach to problem-solving.

This is a profound difference and explains why agile thinking represents an important and
significant step forward in our ability to make progress in solving, ideally, harder and harder
problems.

This doesn’t mean that agile thinking is perfect or the final answer. Rather, it is an important,
significant, enabling step in the direction of better performance.

The lure of the plan is a false one. This is not a more diligent, more controlled, more professional
approach. Rather, it is more limited and more based on hunch and guesswork and can, realistically,
work only for small, simple, well-understood, well-defined systems.

The implications of this are significant. It means that we must, as Kent Beck famously said in the
subtitle to his seminal work Extreme Programming Explained, “Embrace change”!

We must learn to have the confidence to begin work precisely when we don’t yet know the answers
and when we don’t know how much work will be involved. This is disquieting for some people and
for some organizations, but it is only the same as the reality of much of the human experience.
When a business starts out on a new venture, they don’t really know when, or even whether, it
will be a success. They don’t know how many people will like their ideas and whether they will be
willing to pay for them.

9780137314911_print.indb 53 06/10/21 5:26 PM

ptg36503484

54 Chapter 4 Work ing I terat ively

Even for something as mundane as a trip in your car, you can’t be certain how long it will take or if
the route that you pick will still be the best route once you have begun. These days we have won-
derful tools like satellite navigation systems with radio connections that not only can plan our route
at the start but can iteratively update the picture with traffic information, allowing us to “inspect
and adapt” to the changing circumstances of our journey.

An iterative approach to planning and execution allows us to always have the most up-to-date pic-
ture of the situation that we are really in, rather than some predictive, theoretical, always-inaccurate
version of that situation. It allows us to learn, react, and adapt as changes happen along the way.
Working iteratively is the only effective strategy for a changing situation.

Practicalities of Working Iteratively
So, what can we do to work this way? The first thing is to work in smaller batches. We need to
reduce the scope of each change and make change in smaller steps; in general, the smaller the
better. This allows us to try out our techniques, ideas, and technology more frequently.

Working in small batches also means that we limit the time-horizon over which our assumptions
need to hold. The universe has a smaller window of time within which it can intrude on our work,
so things are less likely to change in damaging ways. Finally, if we make small steps, even if a small
step is invalidated by changing circumstance or just misunderstanding on our part, there is less
work lost. So, small steps really matter.

The obvious incarnation of this idea in agile teams is the idea of iterations or sprints. Agile disci-
plines promote the idea of working to completed, production-ready code, within a small, fixed
period of time. This has multiple, beneficial effects, the effects described in this chapter. However,
this is only one, coarse-grained incarnation of working more iteratively.

At a completely different scale, you can think of the practices of continuous integration (CI) and
test-driven development (TDD) as being inherently iterative processes.

In CI we are going to commit our changes frequently, multiple times per day. This means that
each change needs to be atomic, even if the feature that it contributes to is not yet complete. This
changes how we approach our work but gives us more opportunities to learn and to understand if
our code still works alongside everyone else’s.

TDD is often described by the practices that contribute to it: Red, Green, Refactor.

• Red: Write a test, run it, and see it fail.

• Green: Write just enough code to make the test pass, run it, and see it pass.

• Refactor: Modify the code and the test to make it clear, expressive, elegant, and more general.
Run the test after every tiny change and see it pass.

This is a deeply fine-grained, iterative approach. It encourages a substantially more iterative
approach to the fundamental technicalities of writing code.

9780137314911_print.indb 54 06/10/21 5:26 PM

ptg36503484

55Summar y

For example, in my own coding, I nearly always introduce new classes, variables, functions, and
parameters via a multistage series of tiny refactoring steps, frequently checking that my code
continues to work, by running my test, as I go.

This is iterative working at a very fine resolution. It means that my code is correct and working for
more of the time, and that means that each step is safer.

At each point in the process, I can re-evaluate and change my mind and the direction of my design
and code easily. I keep my options open!

These properties are why working iteratively is so valuable and such a foundationally important
practice for an engineering discipline for software development.

Summary
Iteration is an important idea and a foundation of our ability to move toward a more controlled
approach to learning, discovery, and better software and software products. However, as ever, there
is no free lunch. If we want to work iteratively, we must change the way that we work in many ways
to facilitate it.

Working iteratively has an impact on the design of the systems that we build, how we organize
our work, and how we structure the organizations in which we work. The idea of iteration is woven
deeply into the thinking behind this book and the model for software engineering that I present
here. All the ideas are deeply interlinked, and sometimes, it may be tricky to figure out where
iteration ends and feedback begins.

9780137314911_print.indb 55 06/10/21 5:26 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

57

Feedback
Feedback is defined as “The transmission of evaluative or corrective information about an action,
event, or process to the original, or controlling, source.”1

Without feedback, there is no opportunity to learn. We can only guess, rather than make decisions
based on reality. Despite this, it is surprising how little attention many people and organizations pay
to it.

For example, many organizations create a “business case” for new software. How many of those
organizations go on to track the cost of development and evaluate it, along with the real benefits
delivered to customers to validate that their “business case” was met?

Unless we can know and understand the results of our choices and actions, we cannot tell if we are
making progress.

This seems so obvious to be not really worth stating, but in practice guesswork, hierarchy, and
tradition are the much more widely used arbiters for decision-making in most organizations.

Feedback allows us to establish a source of evidence for our decisions. Once we have such a
source, the quality of our decisions is, inevitably, improved. It allows us to begin to separate myth
from reality.

1. Source: Merriam Webster Dictionary. https://www.merriam-webster.com/dictionary/feedback

5

9780137314911_print.indb 57 06/10/21 5:26 PM

https://www.merriam-webster.com/dictionary/feedback

ptg36503484

58 Chapter 5 Feedback

A Practical Example of the Importance of Feedback
It can be difficult to understand abstract ideas. Let’s imagine a simple, practical example of how
important speed and quality in feedback really are.

Imagine being faced with the problem of balancing a broom.

We could decide to carefully analyze the structure of the broom, work out its center of gravity,
closely examine the structure of the handle, and calculate exactly the point at which the broom will
be perfectly balanced. We could then very carefully maneuver the broom into the precise position
that we had planned and, through perfect execution, ensure that we had left no residual impulse
that left the broom accelerating out of balance.

This first approach is analogous to a waterfall development model. It is possible to imagine it work-
ing but incredibly unlikely that it will. The result is extremely unstable. It relies on our predictions
being perfect, and given the least perturbation, or inaccuracy in our predictions, the broom falls.

Alternatively, we could put the broom on our hand and move our hand in response to how it tipped.

The second approach is based on feedback. It is quicker to set up, and the speed and quality of the
feedback will drive its success. If we are too slow moving our hand, we will have to make big correc-
tions. If we are too slow sensing the direction of tilt of the broom, we will have to make big correc-
tions or the broom will fall. If our feedback is fast and effective, we can make tiny corrections and
the broom will be stable. In fact, even if something comes along and disturbs the broom, or us, we
can react quickly and correct the problem.

This second approach is so successful that this is how space rockets “balance” on the thrust of their
engines. It is so stable that if I am any good at it, even if you unexpectedly shoved me and forced
me to stagger, I could probably keep the broom in balance.

This second approach feels more ad hoc; it feels, in some sense, less rigorous, but it is profoundly
more effective.

I can imagine you thinking, at this point, “what has our author been drinking? What do brooms have
to do with software?” My point here is that there is something deep and important about how pro-
cesses work.

The first example is of a planned, predictive approach. This approach works well as long as you
completely understand all of the variables and as long as nothing comes along to change your
understanding or your plan. This is really the basis of any detailed, planned approach. If you have a
detailed plan, there is only one correct solution, so either the problem has to be so simple to make
that possible or you have to be omniscient in your abilities to predict the future.

The second, alternative approach still involves a plan “I am going to balance the broom,” but the
plan is all about outcomes and says nothing about the mechanism through which you will achieve
it. Instead, you are just going to start work and do whatever it takes to achieve the desired outcome.
If that means responding to feedback and moving your hand a few millimeters very quickly, good. If
it means taking a few staggering steps forward and sideways while moving your hand a meter

9780137314911_print.indb 58 06/10/21 5:26 PM

ptg36503484

59A Prac t ical Example of the I mpor tance of Feedback

or more because something unexpected happened, that is fine too, as long as the outcome is
achieved.

The second approach, although it may seem more ad hoc, more like “winging it,” is actually pro-
foundly more effective and more stable in terms of outcome. In the first approach there is only one
correct solution. In the second there are many, so we are more likely to achieve one of them.

Feedback is an essential component of any system that operates in a changing environment.
Software development is always an exercise in learning, and the environment in which it takes place
is always changing; therefore, feedback is an essential aspect of any effective software development
process.

The NATO Conference2

By the late 1960s, it had become obvious that computer programming was a difficult thing to
do well. The systems being built were increasing in size, complexity, and importance. The num-
ber of people programming them was growing quickly. As this increase in difficulty dawned
on people, they began thinking about what they could do to make the process of creating
software more efficient and less error-prone.

One outcome of this thinking was to hold a famous conference to try to define what software
engineering was. The conference was held in 1968 and was intended to explore the meaning
and practice of software engineering in broad terms.

The conference was an “invitation-only” event, recruiting global experts, of the time, in the field
to discuss a wide range of ideas in the context of software engineering. Given the remarkable
growth in capacity in computer hardware over the past 50 years, it is inevitable that some ideas
are extremely dated:

Dr. H J Helms: In Europe alone, there are about 10,000 installed computers—this number is
increasing at a rate of anywhere from 25 percent to 50 percent per year. The quality of software
provided for these computers will soon affect more than a quarter of a million analysts and
programmers.

Other ideas seem more durable:

A J Perlis: Selig’s picture requires a feedback loop, for monitoring of the system. One must collect
data on system performance, for use in future improvements.

While Perlis’s language sounds dated, the idea could be describing a modern DevOps approach
to development rather than the creation of something written in Algol!2

 2. Source: “NATO Conference on Software Engineering 1968,”https://bit.ly/2rOtYvM

9780137314911_print.indb 59 06/10/21 5:26 PM

https://bit.ly/2rOtYvM

ptg36503484

60 Chapter 5 Feedback

Many other contributions were similarly prescient:

F Selig: External specifications, at any level, describe the software product in terms of the
items controlled by and available to the user. The internal design describes the software
product in terms of the program structures which realize the external specifications. It has to be
understood that feedback between the design of the external and internal specifications is an
essential part of a realistic and effective implementation process.

This description sounds remarkably like the stories3 of agile development to modern ears,
describing the importance of separating “what” from “how” in the requirements process.

There are cores of universal truth in which, with the benefit of 21st century hindsight, we
recognize the problems and practice of our trade:

d’Agapeyeff: Programming is still too much of an artistic endeavor. We need a more substantial
basis to be taught and monitored in practice on the:

(i) structure of programs and the flow of their execution;

(ii) shaping of modules and an environment for their testing;

(iii) simulation of run time conditions.

With the benefit of that hindsight, ideas like “shaping modules and environments [to facilitate]
testing” and “simulating run time conditions” sound completely modern and correct and form
much of the basis of a continuous delivery approach to software development.

Reading these proceeds today, there are many ideas that are clearly durable. They have stood
the test of time and are as true today as they were in 1968.

There is something different, something more profound, in saying “Establish feedback loops” or
“Assume that you will get things wrong” compared to “Use language X” or “Prove your designs
with diagramming technique Y.”

Feedback in Coding
In practice, how does this need for fast, high-quality feedback impact how we should work?

If we take feedback seriously, we want lots of it. Writing code and relying on the testing team to
report on it six weeks later is not going to suffice.

My own approach to writing code has evolved significantly over the course of my career. I now
employ feedback at multiple levels all the time. I make changes in tiny steps.

3. A user story is an informal description of a feature of the system, written from the perspective of a user of the
system. It was one of the ideas introduced in Extreme Programming.

9780137314911_print.indb 60 06/10/21 5:26 PM

ptg36503484

61Feedback in I ntegrat ion

I generally take a test-driven approach to the way that I write code. If I want to add some new
behavior to my system, I will first write a test.

As I begin writing the test, I want to know if my test is correct. I would like some feedback to indi-
cate the correctness of my test. So I write the test and run it in order to see it fail. The nature of the
failure gives me feedback that helps me understand if my test is correct.

If the test passed, before I have written any code to make it pass, there is something wrong with my
test, and I need to correct it before proceeding. All of this describes the application of fine-grained
feedback techniques focused on learning quickly.

As I described in the previous chapter, I make changes to my code as a series of tiny steps. There are,
at least, two levels of feedback at play here. For example, I use the refactoring tools in my IDE a lot
to help me with the first, but I also get feedback at every step on whether my code is working and,
more subjectively, if I like what I see as my design evolves. As a result, my ability to spot mistakes, or
missteps, is greatly enhanced.

This second level of feedback is provided by the fact that every time I make a change, I can rerun
the test that I am currently working with. This gives me very fast confirmation that my code
continues to work after the change.

These feedback cycles are incredibly short, or should be. Most of the feedback cycles I have
mentioned here take a handful of seconds at most. Some, like running your unit test to validate that
everything is still working, is probably, more likely, measured in milliseconds.

This short, fast, feedback cycle is incredibly valuable because of its speed and the immediacy of its
relevance to what you are working on.

Organizing our work into a series of tiny steps gives us more opportunities to reflect on our
progress and steer our designs toward better outcomes.

Feedback in Integration
When I commit my code, it will trigger my continuous integration system and evaluate my
change in the context of everyone else’s. I get a new level of feedback at this point. I gain deeper
understanding. In this case, I can now learn if something in my code has “leaked out” and caused
some other part of the system to fail.

If all the tests pass at this stage, I get feedback that I am safe to proceed to work on the next thing.

This is the vitally important level of feedback that underpins the idea of continuous integration.

Sadly, continuous integration is still widely misunderstood and poorly practiced. If we are trying to
establish an intellectually rigorous approach to software development, an engineering approach
then is important to evaluate the pros and cons of ideas dispassionately. This often seems to be
difficult for our industry. Many ideas are widely adopted because they feel better rather than
because they are better.

9780137314911_print.indb 61 06/10/21 5:26 PM

ptg36503484

62 Chapter 5 Feedback

A good example of this is the debate between practitioners of continuous integration (CI) and
feature branching (FB).

Let’s pick apart the pros and cons of these approaches rationally.

Continuous integration is about evaluating every change to the system along with every other
change to the system as frequently as possible, as close to “continuously” as we can practically get.

The definition for CI states:

(CI) is the practice of merging all developers’ working copies to a shared mainline several times
a day.4

Most CI experts will relax “several times a day” to “at least once per day” as an acceptable, though
not desirable, compromise.

So, by definition, CI is about exposing changes in small increments to evaluation at least once
per day.

Branching, of any kind, also by definition, is about isolating change:

Branches allow contributors to isolate changes.5

In basic, definitional terms, CI and FB then are not really compatible with each other. One aims to
expose change as early as possible; the other works to defer that exposure.

FB looks simple, and its practitioners enjoy it because it appears to make life simpler. “I can code
independently of my teammates.” The problem comes at the point when changes are merged.
CI was invented to get over the problem of “merge-hell.”

In the bad old days, and in some recalcitrant organizations to this day, teams and individuals would
work on sections of code until they were deemed “complete” before merging them into the whole.

What happened was that at this point all sorts of unexpected problems were identified, so the
merge became complex and took a long, and unpredictable, time to accomplish.

Two approaches were adopted to try to resolve the problem; CI was one. The other approach was to
improve the quality of the merge tools.

A common argument from FB practitioners is that the merge tools are now so good that merging
is rarely a problem. However, it is always possible to write code that merge tools will miss; merging
code is not necessarily the same as merging behavior.

Say you and I are working in the same codebase, and we have a function that does several things to
transform a value. We both independently decide that this function needs to increment the value
by one, but we each implement that in a different part of the function. It is entirely possible that the
merge will miss that these two changes are related because they are in different parts of the code,
and we get both. Now our value is incremented by two instead of one.

4. A definition for continuous integration may be found here: https://bit.ly/2JVRGiv.

5. A definition for branching in version control can be found here: https://bit.ly/2NlAll8.

9780137314911_print.indb 62 06/10/21 5:26 PM

https://bit.ly/2JVRGiv
https://bit.ly/2NlAll8

ptg36503484

63Feedback in Design

Continuous integration, when practiced as it is defined, means that we get regular, frequent drips
of feedback. It gives us powerful insight into the state of our code and the behavior of our system
throughout the working day, but it comes at a cost.

For CI to work, we have to commit our changes frequently enough to gain that feedback and that
insight. This means working very differently.

Instead of working on a feature until it is “finished,” or “ready for production” continuous integra-
tion and its big brother continuous delivery demand of us to make changes in small steps and have
something ready for use after every small step. This changes how we think about the design of our
system in some important ways.

This approach means that the process to design our code is more like one of guided evolution, with
each small step giving us feedback, but not necessarily yet adding up to a whole feature. This is a
very challenging change of perspective for many people, but it is a liberating step when embraced
and is one that has a positive impact on the quality of our designs.

Not only does this approach mean that our software is always releasable and that we are getting
frequent, fine-grained feedback on the quality and applicability of our work, but it also encourages
us to design our work in a way that sustains this approach.

Feedback in Design
One of the reasons that I value TDD so highly, as a practice, is the feedback that it gives me on the
quality of my design. If my tests are hard to write, that tells me something important about the
quality of my code.

My ability to create a simple, effective test, and the effectiveness of my design, is related through
the attributes of quality that we consider important in “good” code. We can argue about an exhaus-
tive definition of what “good quality” in code means for a long time, but I don’t think that I need to
do that to make my point. I suggest that the following attributes are pretty much agreed to be hall-
marks of quality in code; they may not be the only attributes of quality, but I am sure that you will
agree with me that they are important:

• Modularity

• Separation of concerns

• High cohesion

• Information hiding (abstraction)

• Appropriate coupling

I expect that by now this list sounds familiar. As well as being “hallmarks of quality” in code, they are
also the tools that allow us to manage complexity. This is not a coincidence!

So how do you put “quality,” on the basis of these attributes, into code? In the absence of TDD, it is
solely down to the experience, commitment, and skills of a developer.

9780137314911_print.indb 63 06/10/21 5:26 PM

ptg36503484

64 Chapter 5 Feedback

With TDD, we write the test first, by definition. If we don’t write the test first, then it isn’t test-driven
development.

If we are going to write the test first, we have to be a strange, dumb kind of person to make our
own lives more difficult. So we are going to try to do that in a way that makes life easier.

For example, we are extremely unlikely to write a test in a way that means we can’t get the results
back from the code that we are testing. Since we are writing the test first, before we have written
any non-test code, that means that we are, at the moment we create the test, also designing the
interface to our code. We are defining how external users of our code will interact with it.

Since we need the results for the test, we will design the code in a way that makes it easy for us to
get at the results that we are interested in. This means that, in TDD, there is a pressure applied to
write code that is more testable. What does testable code look like?

It is all of the following:

• Is modular

• Has a good separation of concerns

• Exhibits high cohesion

• Uses information hiding (abstraction)

• Is appropriately coupled

The Fundamental Role of Testing

In classic approaches to development, testing was sometimes left as an exercise for the end of
a project, sometimes left to the customer, and sometimes so squeezed by time pressures as to
almost disappear completely.

This kind of approach made the feedback loop so extended that it was essentially useless. Errors
introduced in coding or design were often not discovered until after the development team had
rolled off the project and handed maintenance on to some production support team.

Extreme Programming (XP) and its application of TDD and CI spun this on its head, placing test-
ing front and center in the development process. This reduced the feedback loop to seconds,
giving almost instant feedback on mistakes that, in turn, could, when done well, eliminate
whole classes of bugs that, in the absence of TDD, often made it into production.

In this school of thought, testing drove the development process and, even more importantly,
the design of the software itself. Software written using TDD looked different from software
that was written without. To make the software testable, it was important to make sure that
expected behaviors could be evaluated.

9780137314911_print.indb 64 06/10/21 5:26 PM

ptg36503484

65Feedback in Architec ture

This pushed designs in particular directions. Software that was “testable” was modular, was
loosely coupled, exhibited high-cohesion, had a good separation of concerns, and implemented
information hiding. These also happen to be properties that are widely regarded as markers of
quality in software. So TDD not only evaluated the behavior of software, but increased the
quality of its design.

Testing in software is extremely important. Software is fragile in a way that few other things in
human experience are. The tiniest defect—a comma out of place—can result in catastrophic
failure.

Software is also much more complex than most human creations. A modern passenger plane
consists of around 4 million parts. The software in a modern Volvo Truck is around 80 million
lines of code, each one composed of multiple instructions and variables.

TDD was not a new idea when Kent Beck described it in his book in the late 1990s. Alan Perlis
had described something similar at the NATO Software Engineering Conference in 1968, but
Beck introduced the concept and described it in significantly more depth, so it was more widely
adopted.

TDD remains a controversial idea in many quarters, but the data is pretty good. This approach
can dramatically reduce the bug count in a system, and it has a positive impact on the quality of
the design of a system.

TDD applies a pressure to create code that is objectively “higher quality.” This is irrespective of the
talent or experience of the software developer. It doesn’t make bad software developers great, but
it does make “bad software developers” better and “great software developers” greater.

TDD, and other aspects of a test-driven approach to development, has an important impact on the
quality of the code that we create. This is the effect of optimizing for better feedback, but this effect
doesn’t stop there.

Feedback in Architecture
A more subtle effect of the application of a feedback-driven approach is seen on the broad software
architecture of the systems that we build, as well as the detailed, code-level, design decisions that
we make.

Continuous delivery is a high-performance, feedback-driven approach to development. One of its
cornerstones is the idea that we should produce software that is always ready for release into pro-
duction. This is a high standard and demands a very high frequency and quality of feedback.

9780137314911_print.indb 65 06/10/21 5:26 PM

ptg36503484

66 Chapter 5 Feedback

Achieving this requires organizations to change many different aspects of their development
approach. Two aspects that come to the fore may be considered architectural qualities of the sys-
tems that we build. We need to take the testability and deployability of our systems seriously.

I advise the companies that I work with to aim for creating “releasable software” at least once per
hour. This means that we must be able to run probably tens, maybe hundreds of thousands of tests
every hour.

Assuming infinite money and compute capacity, we can run our tests in parallel to optimize for fast
feedback, but there is a limit. We can imagine running each test independently and in parallel with
all of the others.

Some tests will need to test the deployment and configuration of the system, so the limiting case
for time to feedback is based on the time to deploy the system and get it up and running, and the
time to run the slowest test case.

If any single test takes longer than an hour to run or if your software takes longer than an hour
to deploy, it won’t be possible to run your tests this quickly, however much money you spend on
hardware.

So the testability and deployability of our system add constraints to our ability to gather feedback.
We can choose to design our systems to be more easily testable and more easily deployable, allow-
ing us to gather feedback more efficiently and over shorter time periods.

We’d prefer tests that take seconds or milliseconds to run and deployment to complete in a handful
of minutes or, even better, a few seconds.

Achieving these levels of performance in deployability and testability takes work and focus by the
team, and a commitment to the ideas of continuous delivery by the development organization, but
it also often requires some careful architectural thinking.

There are two effective routes: either you can work to build monolithic systems and optimize them
for deployability and testability, or you can modularize them into separate, individually “deployable
units.” This second approach is one of the driving ideas behind the popularity of microservices.

The microservice architectural approach allows teams to develop, test, and deploy their services
independently of one another; it also decouples them organizationally, enabling firms to grow more
effectively and efficiently.

The independence of microservices is a significant benefit, but also a significant complication.
Microservices are, by definition, independently deployable units of code. That means that we don’t
get to test them together.

Applying continuous delivery to monolithic systems is effective, but it still demands of us that we
can make small changes and evaluate them multiple times per day. For larger systems, we are still
going to need to be able to work alongside many other people in a codebase, so we need the pro-
tections that good design and continuous integration will bring.

9780137314911_print.indb 66 06/10/21 5:26 PM

ptg36503484

67Prefer Ear ly Feedback

Whether we choose to decompose our systems into smaller, more independent modules (microser-
vices) or develop more efficient but more tightly coupled codebases (monoliths), both of these
approaches have significant impacts on the architecture of the software systems that we create.

The adoption of continuous delivery in both approaches, monolith and microservice, promotes
more modular, better abstracted, more loosely coupled designs, because only then can you deploy
them and test them efficiently enough to practice continuous delivery.

This means that valuing and prioritizing feedback in our development approach promotes more
sensible, more effective architectural decision-making.

This is a profound and important idea. It means that through the adoption of some generic prin-
ciples we can gain a significant, measurable impact on the quality of the systems that we create.
By focusing process, technology, practice, and culture on the efficient delivery of high-quality feed-
back, we can create better-quality software and do that with greater efficiency.

Prefer Early Feedback
In general, it is an effective practice to try to get definitive feedback as early as possible. When I am
coding, I can use my development tools to highlight errors in my code as I type. This is the fastest,
cheapest feedback loop, and one of the most valuable. I can take advantage of this by using tech-
niques like type systems to give me fast definitive feedback on the quality of my work.

I can run the test (or tests) in the area of the code that I am working on in my development environ-
ment and get feedback very quickly—usually in less than a few seconds.

My automated unit tests, created as the output of my TDD approach, give me my second level of
feedback as I work and regularly run them in my local development environment.

My full suite of unit and other commit tests will be run once I have committed my code. This gives
me a more thorough, but more costly in terms of time, validation that my code works along with
other people’s code.

Acceptance tests, performance tests, security tests, and anything else that we consider important to
understanding the validity of our changes give us further confidence in the quality and applicability
of our work, but at the cost of taking longer to return results.

So working to prefer to identify defects, first in compile-ability (identified in our development
environment) and then in unit tests and, only after those validations have succeeded, in other forms
of higher-level tests, means that we can fail soonest and get the highest quality, most effective
feedback.

Continuous delivery and DevOps practitioners sometimes refer to this process of preferring early
failures as shift-left, though I prefer the less obscure “Fail fast!”

9780137314911_print.indb 67 06/10/21 5:26 PM

ptg36503484

68 Chapter 5 Feedback

Feedback in Product Design
The impact of taking feedback on the quality of the systems that we create seriously is important
and profound, but ultimately, software developers are not paid to make nicely designed, easily test-
able software. We are paid to create value of some kind for the organizations that employ us.

This is one of the tensions that is often at the heart of the relationship between the more business-
focused people and the more technically focused people in most traditional organizations.

This is a problem that focuses on enabling the continuous delivery of useful ideas into production
addresses.

How do we know that the ideas that we have, the products that we create, are good ones?

The real answer is that we don’t know until we get feedback from the consumers of our ideas (our
users or customers).

Closing the feedback loop around the creation of product ideas and delivering value into produc-
tion is the real value of continuous delivery. It is the reason that it has become so popular in organi-
zations around the world, not the narrower (though still important) technical advantages.

Applying the principles of employing and optimizing for fast, high-quality feedback enables organi-
zations to learn faster; to discover what ideas work, or don’t, for their customers; and to adapt their
products to better meet customer needs.

The most effective software development organizations in the world take this aspect very seriously
indeed.

Adding telemetry to our systems that allows us to gather data about which features of our systems
are used, and how they are used, is now the norm. Gathering information (feedback) from produc-
tion systems to not only diagnose problems, but also to help us to more effectively design the next
generation of products and services, moves organizations from being “business and IT” to being
“digital businesses.” This has become so sophisticated in many areas that the information that is
gathered is often more valuable than the services provided and can provide insights into customer
wants, needs, and behavior that even the customers themselves are not conscious of.

Feedback in Organization and Culture
The measurability of software development has long been a problem. How do we measure success,
and how do we measure improvement? How can we tell if the changes that we make are effective
or not?

For most of the history of software development, this was based on either measuring the things
that were easy to measure (e.g., “lines of code” or “developer days” or “test coverage”) or guessing
and making subjective decisions on the basis of intuition. The problem is that none of these things
is really correlated in any realistic way with success, whatever that means.

9780137314911_print.indb 68 06/10/21 5:26 PM

ptg36503484

69Feedback in Organizat ion and Culture

More lines of code doesn’t mean better code; it probably means worse code. Test coverage is mean-
ingless unless the tests are testing something useful. The amount of effort that we put into software
is not related to its value. So guesswork and subjectivity may well be as good as these measures.

So how can we do better? How can we establish useful feedback without some kind of measure of
success?

There are two approaches to this problem. The first has been established for some time in agile devel-
opment circles. We accept that the judgments are somewhat subjective, but we try to adopt some
reasonable discipline to mitigate the subjectivity. The success of this approach is, inevitably, inexora-
bly tied to the individuals involved. It is “individuals and interactions over processes and tools.”6

This strategy was important historically in moving us away from more formulaic, big-ceremony
approaches to software development and remains important as a foundational principle.

Agile approaches to development brought the team, the people in the work, into the feedback loop
so that they could observe the results of their actions, reflect on them, and refine their choices over
time to improve their situation. This subjective, feedback-driven approach was fundamental to that
most fundamental agile idea of “inspect and adapt.”

A small refinement that I would add to this subjective approach to feedback to improve the quality
of the feedback is to be specific about its nature.

For example, if your team has an idea to improve its approach to something, take a leaf from the
scientist’s book and be clear about where you think you are now (current state) and where you
would prefer to be (target state). Describe a step that you think will take you in the correct direction.
Decide how you will decide whether you are closer to, or further away from, your target state. Make
the step and check to see if you are closer to, or further from, the target and repeat until you are at
the target.7

This is a simple, light weight application of the scientific method. This should be obvious. This
should be “motherhood and apple pie,” but it is not what most people in most organizations do.
When people apply this kind of approach, they get much better results. For example, this is the idea
that underpins Lean thinking8 and, specifically, the “Toyota Way,” the Lean approach to production
that revolutionized the car industry and many others.

For many years I have believed that this is all we could really do to apply still subjective but better
organized approaches to problem-solving. In recent years, my mind has been changed by the
excellent work of the Google DORA group.9 I now believe that their work has identified some more

6. “Individuals and interactions over processes and tools” is a statement from the Agile Manifesto; see https://
agilemanifesto.org/.

7. Mike Rother described this approach in more detail in his book Toyota Kata; see https://amzn.to/2FvsI74. It is,
though, really just a refinement of the Scientific Method.

8. Lean thinking is a catchall term for ideas aligned with and associated with Lean Production and Lean Process.

9. The DORA group designed the scientifically defensible approach to data collection and analysis at the heart
of the “State of DevOps Report,” which was produced annually from 2014. Their approach and findings are
described in more detail in the book Accelerate: The Science of Lean Software and DevOps.

9780137314911_print.indb 69 06/10/21 5:26 PM

https://agilemanifesto.org/
https://agilemanifesto.org/
https://amzn.to/2FvsI74

ptg36503484

70 Chapter 5 Feedback

specific, less subjective measures that we can usefully apply to evaluating changes in organization
and culture, as well as more technically focused changes.

This does not imply that the previous approach is redundant. Human creativity must be applied,
data-driven decision making can be dumb too, but we can inform, and reinforce, subjective
evaluation with data and be a little more quantitative in our evaluations of success.

The stability and throughput measures described in Chapter 3 are important. They are not ideal, and
the model that they operate within is a correlative model, not a causative one. We don’t have the
evidence to say “X causes Y”; it is more complex than that. There are also lots of questions that we
would like to be able to answer more quantitatively but don’t know how. Stability and throughput
are important because they are the best that we currently understand, not because they are perfect.

Nevertheless, this is an enormous step forward. Now we can use these measures of efficiency and
quality, which are measures of sensible, useful outcomes, to evaluate almost any kind of change. If
my team decides to reorganize where they sit to improve communications, we can monitor stability
and throughput to see if they change. If we want to try some new technology, does it make us pro-
duce software more quickly, improve our throughput numbers, or improve our quality to improve
our stability numbers?

This feedback is invaluable as a “fitness function” for guiding our efforts toward the better outcomes
predicted by the DORA model. By tracking our scores in terms of stability and throughput as we
evolve our process, technology, organization, and culture, we can be sure that the changes that we
make are in fact beneficial. We move from being victims of fashion or guesswork to being more like
engineers.

These changes are still proxies for the real value of the software that we produce. That value is
shown in the impact our changes have on users. However, these changes measure important prop-
erties of our work and are not open to manipulation. If your stability and throughput numbers are
good, your technical delivery is good. So if you are not successful with good stability and through-
put, your product ideas or business strategy is at fault.

Summary
Feedback is essential to our ability to learn. Without fast, effective feedback, we are guessing. Both
the speed and the quality of feedback matter. If the feedback is too late, it is useless. If it is mislead-
ing or wrong, the decisions that we make on its basis will be wrong, too. We often don’t think about
what feedback we need to inform our choices and how important the timelines of feedback that we
gather really are.

Both continuous delivery and continuous integration are ideas that are fundamentally grounded
in the idea of optimizing our development process to maximize the quality and the speed of the
feedback that we collect.

9780137314911_print.indb 70 06/10/21 5:26 PM

ptg36503484

71

Incrementalism
Incrementalism is defined as follows: “Incremental design is directly related to any modular design
application, in which components can be freely substituted if improved to ensure better performance.”1

Working incrementally is about building value progressively. Put simply, this is about taking advan-
tage of the modularity or componentization of our systems.

If working iteratively is about refining and improving something over a series of iterations, then
working incrementally is about building a system, and ideally releasing it, piece by piece. This is cap-
tured beautifully in Figure 6.1, taken from User Story Mapping [Patton].2

Figure 6.1
Iterative versus incremental

1. Source: Wikipedia, https://en.wikipedia.org/wiki/Continuous_design

2. I first saw this comparison between the “iterative” and “incremental” approaches in the book User Story
Mapping by Jeff Patton. See https://bit.ly/3s9jvY6.

6

9780137314911_print.indb 71 06/10/21 5:26 PM

https://en.wikipedia.org/wiki/Continuous_design
https://bit.ly/3s9jvY6

ptg36503484

72 Chapter 6 I ncremental ism

To create complex systems, we need both approaches. An incremental approach allows us to
decompose work and to deliver value step-by-step (incrementally), getting to value sooner and
delivering value in smaller, simpler steps.

Importance of Modularity
Modularity is an important idea. It is important in the development of technology but is not specific
to information technology. When stone-age craftspeople made flint axes with a wooden handle,
this was a modular system. If you broke the handle, you could keep the ax-head and make a new
handle. If you broke the ax-head, you could lash a new one to your old, trusty handle.

As machines got more complex, the importance and value of modularity grew along with them.
Through all but the last few years of the twentieth century, when an airplane designer wanted to do
something new, they divided their work into two major modules: the power plant (engine) and air-
frame. A large proportion of aviation advancement was carried out as a kind of technical relay race.
If you wanted to try a new engine, you tried it first in a proven airframe. If you wanted to try a new
airframe, you used a proven power plant.

When the Apollo program started in the 1960s, with the goal of sending men to the moon, one
of the early leaps forward was creating a mission profile called a lunar orbit rendezvous (LOR). LOR
meant that the spacecraft would be divided into a series of modules, each focused on a specific part
of the challenge. There was the Saturn V whose job was to get everything else into Earth’s orbit, and
then the final stage was to have another task-specific module propel the rest of the components of
the spacecraft from Earth to the moon.

The rest of the Apollo spacecraft was composed of four main modules:

• The Service Module’s job was to get everything else from Earth to the moon and back again.

• The Command Module was the main habitat for the astronauts; its main job though was to
return the astronauts from Earth’s orbit to the surface.

• The lunar excursion module (LEM) was made up of the other two modules: the Descent and
Ascent modules. The Descent Module got the astronauts from lunar orbit to the surface of the
moon.

• The Ascent Module returned the astronauts to lunar orbit where they rendezvoused, docked,
with the Command and Service Modules before heading back to Earth.

This modularity had lots of advantages. It meant that each component could be built to focus on
one part of the problem and would need to compromise less in its design. It allowed different
groups—in this case completely different companies—to work on each module largely indepen-
dent of the others. As long as the different groups agreed on how the modules would interface with
each other, they could work to solve the problems of their module without constraint. Each module
could be lighter because, for example, the Lunar Module didn’t need to carry the means of return-
ing to Earth all the way to the surface of the moon.

9780137314911_print.indb 72 06/10/21 5:26 PM

ptg36503484

73Organizat ional I ncremental ism

Although it is a stretch to call any Apollo spacecraft simple, each module could be simpler than if
they were designed to cope with a larger part of the whole problem.

I hope that this diversion is making you think about how this relates to software. Although none of
these complex machines was simple, they were minimalist in terms of meeting their needs.

This is really the philosophy of component-based approaches to design, like microservices, or
actually any service-oriented design.

Divide the problem into pieces aimed at solving a single part of a problem. This approach has many
advantages. Each component of the system is simpler, more focused on the task at hand. Each com-
ponent is easier to test, is faster to deploy, and sometimes may even be deployed independently of
the others. Once you reach that point, and not before, you are really in the realm of microservices.

However, microservices are not the only approach where we can achieve and benefit from modular-
ity in any software system. It is really a matter of taking design seriously.

Taking a modular approach forces you to consider the boundaries between the modules of the sys-
tem and take them seriously. These boundaries are important; they represent one of the key points
of coupling in the system, and focusing on the protocols of information exchange between them
can make a significant difference to how easy it is to isolate work and increase flexibility. I explore
these ideas in more detail in later chapters.

Organizational Incrementalism
One of the huge benefits that modularity brings is isolation; the internal details of one module are
hidden from, and irrelevant to, other modules. This is important for technical reasons, but it is even
more important for organizational reasons.

A modular approach frees teams to work more independently. They can each make small incremen-
tal steps forward without needing to coordinate, or at least with minimal coordination, between
teams. This freedom allows organizations that embrace it fully to move forward and innovate at
unprecedented pace.

Beyond the value of the ability to make technical changes incrementally, this approach also frees
organizations to adopt an incremental approach to cultural and organizational change.

Many organizations struggle to achieve effective changes in their working practices. Such “trans-
formations” are notoriously difficult. The main barrier to making such a change is always how you
spread a solution across an organization. There are two barriers that make this spread of changes
difficult. The first is explaining and motivating people to make the change, and the second is
overcoming the organizational or procedural barriers that limit its adoption.

The most common approach to implementing change seems to be to try to standardize processes
across an organization. “Process mapping” and “business transformation” are big business for man-
agement consultancies. The problem is that all organizations, certainly those involved in creative
work, are dependent on human creativity. If we could “standardize” the process into a series of steps,

9780137314911_print.indb 73 06/10/21 5:26 PM

ptg36503484

74 Chapter 6 I ncremental ism

we could automate it and eliminate the costly, error-prone people. How many times have you used
an automated telephone filtering system and gotten to some menu that doesn’t have an option
that matches your inquiry or simply dumps the call? This is because some things aren’t simple to
break into simple steps, as anyone who has ever written a computer program will attest.

When we are discussing software development, we are nowhere close to being able to eliminate
human creativity from this endeavor. So to enable human creativity, we need to leave room in the
process and policies that structure our work for creative freedom. One of the defining characteristics
of high-performing teams in software development is their ability to make progress and to change
their minds, without asking for permission from any person or group outside of their small team.3

Let’s pick this apart a little. Let us start with “small teams.” Although we now have more data to back
up the assertion,4 it has long been known that small teams outperform large ones. In his book The
Mythical Man Month, Fred Brooks wrote:

The conclusion is simple: If a 200-man project has 25 managers who are the most competent and
experienced programmers, fire the 175 troops and put the managers back to programming.

These days, most agile practitioners would consider a team of 25 to be a large team. Current think-
ing is that the optimum team size is eight or fewer people.

Small teams are important for a variety of reasons, but their ability to make progress in small, incre-
mental steps is an important one. To carry out organizational change, the most effective strategy is
to create many small, independent teams and allow them the freedom to make their own changes.
This progress can, and should still, be structured. It should be constrained to some degree to allow
separate, independent teams to head in a roughly similar direction, targeted at fulfilling a larger-
scale organizational vision, but still this is a fundamentally more distributed approach to organiza-
tional structure than has been traditional for most big firms.

The key transformation then that most organizations need to make is toward greater autonomy for
people and teams to deliver high-quality, creative work. Distributed, incremental change is the key.

Modular organizations are more flexible, more scalable, and more efficient than more traditional
organizational structures for software development.

Tools of Incrementalism
My five principles for learning and my five principles for managing complexity are deeply inter-
linked. It is hard to talk about any of them without referring to the others.

3. The Accelerate Book describes how teams that take a more disciplined approach to development spend “44%
more time on new work” than teams that don’t. See https://amzn.to/2YYf5Z8.

4. In their book Accelerate: The Science of Lean Software & DevOps, Nicole Forsgren, Jez Humble, and Gene Kim
describe the characteristics of high-performing teams. See https://amzn.to/3g0Lvup.

9780137314911_print.indb 74 06/10/21 5:26 PM

https://amzn.to/2YYf5Z8
https://amzn.to/3g0Lvup

ptg36503484

75Tools of I ncremental ism

The most profound tools to enable incrementalism are feedback and experimentation, but we
also need to focus on modularity and separation of concerns.

Beyond those deeper principles, though, what are the less abstract ideas that can help us achieve
a more incremental approach to change? What is it that we need to do that will allow us to work
incrementally?

Incrementalism and modularity are closely linked. If we want to make a change incrementally, we
must be able to make that change while limiting its impact in other areas. Working to improve the
modularity of our system is a good idea, so how do we do that?

If my code is a big spaghetti ball-of-mud and I make a change in one place, I may inadvertently
affect another part of the code. There are three important techniques that will allow me to make
such a change more safely.

I can architect my system to limit the scope of the change. By designing systems that are modular
and have a good separation of concerns, I can limit the impact of my changes beyond the area of
the code that is my immediate focus.

I can adopt practices and techniques that allow me to change the code with lower risk. Chief among
these safer practices is refactoring. That is the ability to make changes in small, simple, controlled
steps that allow me to improve or at least modify my code safely.

Refactoring skills are often undervalued by developers who seem to miss their import. If we can
make changes in often tiny increments, we can be much more confident in the stability of that
change.

If I use the refactoring tools within my development environment to, say, “extract a method” or
“introduce a parameter,” then I can be confident that the change will be done safely, or I can buy
better development tools.

Such tiny changes are also easy to back away from if I decide that I don’t like the results; I can work
iteratively as well as incrementally. If I combine my fine-grained incrementalism with strong version
control, I am always only a small number of steps away from a “safe place.” I can always withdraw to
a position of stability.

Finally, there is testing. Testing, and specifically automated testing, gives us protection to move for-
ward incrementally with significantly more confidence.

There are subtleties to working effectively with high levels of automated testing that we will explore
in later chapters, but automated testing is an important component of our ability to make change
quickly, with assurance.

There is one more aspect to automated testing that is often missed by people who have not really
adopted it as a pervasive part of their daily working practice. That is the impact that testing has on
design and specifically the modularity and separation of concerns in our designs.

A test-driven approach to automated testing demands that we create mini executable specifications
for the changes that we make to our systems. Each of these little specifications describes the neces-
sary conditions to begin the test, executes the behavior under test, and then evaluates the results.

9780137314911_print.indb 75 06/10/21 5:26 PM

ptg36503484

76 Chapter 6 I ncremental ism

To manage the amount of work necessary to achieve all of this, we are crazy if we don’t try to make
our lives easier by keeping the tests as simple as we can and by designing our system as testable
code.

Since testable code is modular with a good separation of concerns, automated testing creates a
positive feedback loop that enhances our ability to design better systems, limit the blast radius of
mistakes, and make changes more safely. Ultimately, the combination of these three techniques
provides a massive step forward in our ability to make changes incrementally.

Limiting the Impact of Change
Our aim is to manage complexity with these techniques, so we allow ourselves to develop systems
more incrementally. We will always prefer to make progress in many small steps, rather than a few
larger, riskier steps.

As we have already explored, if we have an organization of more than one small team of people cre-
ating software, then we can do that most efficiently if those different groups of people are able to
make progress independently of one another.

There are only two strategies that make sense, and both are incremental in nature.

We can decompose our systems into more independent pieces, as we have already described in this
chapter, or we can improve the speed and quality of feedback that we gather when we integrate
our changes through continuous integration.

To make the pieces of our system more independent, we can use the powerful technique of the
Ports & Adapters pattern.5

At any interface point between two components of the system that we want to decouple, a port,
we define a separate piece of code to translate inputs and outputs, the adapter. This allows us more
freedom to change the code behind the adapters without forcing change on other components
that interact with it through this port.

This code is the core of our logic, so being able to change this without coordinating with other
teams or people is a big win. As a result, we can safely make incremental progress in this part of the
code and then deal with the significantly trickier and costly changes in the agreed-upon protocols
of information exchange between components. These changes should, ideally, happen a lot less
often, so teams will break one another’s code significantly less often, too.

We should always treat these integration points, these ports, with a little more care than other
parts of our systems because they cause more pain when things need to change here. The Ports &
Adapters approach gives us a strategy to embody that “more care” in our code.

5. Ports & Adapters is an architectural pattern aimed at producing more loosely coupled application compo-
nents; it is also known as Hexagonal Architecture. See https://bit.ly/3cwH3Sd.

9780137314911_print.indb 76 06/10/21 5:26 PM

https://bit.ly/3cwH3Sd

ptg36503484

77I ncremental Design

Note, this has nothing to do with the technology in use. Ports & Adapters is just as useful—probably
more useful—for binary information sent through a socket because it is structured text sent via a
REST API call.

The other important, and often overlooked, tool in managing the impact of change is speed of
feedback. If I write some code that breaks your code, then how much that matters is very different
depending on when we find out that I broke it.

If we only discover that I broke something months later, then the implications may be serious. If our
code is already in production when we find the problem, the implications could be very serious.

If, on the other hand, we find out within a few minutes of my making the change, then it is no big
deal. I can resolve the problem that I created, maybe before you even notice. This is the problem
that continuous integration and continuous delivery solve.

This means that we can use either, or both, of these strategies to limit the impact of change. We can
design our systems to enhance our ability to make changes, without forcing the need to change
on others, and we can optimize our working practices to make changes in small, incremental steps.
Committing those small changes to some shared evaluation system and then optimizing that
evaluation system give us feedback quickly enough to allow us to react to it and to manage any
problems that our changes may cause.

Incremental Design
I have been a long-time advocate for agile approaches to software development. In part this is
because I see agile as an important step, a “beginning of infinity” step, as I described in an earlier
chapter. This matters because it means that we can begin work before we have all the answers. We
learn as we incrementally make progress, which is an idea at the heart of this book.

This challenges many software developers preconceptions. Many people that I talk to struggle with
the idea of being able to write code before they have a detailed idea of the design they want to
create.

Even more find the idea of incrementally architecting a complex system almost inconceivable, but
both of these ideas are at the heart of any high-quality engineering approach.

Complex systems don’t spring fully formed from the mind of some genius creator; they are the fruits
of working through problems, deepening our understanding, and exploring ideas and potential
solutions through sometimes hard work.

In part, this is challenging because it requires that we flip some kind of mental switch, and it
demands a certain level of self-confidence that we will be able to solve problems that we don’t yet
know anything about when they eventually surface.

My arguments in this book about what engineering really is and what software development really
is are intended to give you some help in flipping that mental switch, if you haven’t already.

M06_Farley_C06_p001-010.indd 77 06/10/21 6:48 PM

ptg36503484

78 Chapter 6 I ncremental ism

The confidence to make progress in the face of ignorance of the future is a different kind of
problem. In some ways it’s one that has some more practical solutions.

First, we need to accept that change, missteps, and the impact of the unexpected, as our knowledge
deepens, are all simply inevitable, whether you acknowledge them or not. It is simply the reality of
all complex creation of any kind, and in the context of software development specifically, it is the
nature of the beast.

Complaints that “they” always get the requirements wrong are one symptom of this. Yes, no one
knows what to build at the start. If they tell you that they do, they really don’t understand the
problem.

Accepting that we don’t know, doubting what we do know, and working to learn fast is a step from
dogma toward engineering.

We use facts about what we know and have discovered incrementally and, at every stage, look to
extrapolate our next step forward into the unknown, based on all of the stuff that we currently
believe that we know. This is a more scientifically rational worldview. As physicist Richard Feynman
once said, science is “a satisfactory philosophy of ignorance.” He also said:

The scientist has a lot of experience with ignorance and doubt and uncertainty, and this experience is
of very great importance, I think.

The techniques of managing complexity are important for several reasons, but in this context of
software development, as an act of discovery it is a vital one because they allow us to limit the
“blast radius” when our “step forward” turns out to be a misstep. You can think of this as defensive
design or defensive coding, but a better way to think of it is as incremental design.

We can choose to write code in ways that are merely a sequence of steps organized, or rather not
organized, as a big ball of mud, poorly compartmentalized. Alternatively, we can write code in ways
that effectively acknowledge and manage its complexity as it evolves.

If we do the former, then the more tightly coupled, less modular, less cohesive the code, the more
difficult it is to change. That is why the properties that allow us to manage the complexity in our
code that I keep repeating are important. If we adopt these ideas at every level of granularity perva-
sively in our work, then we close fewer doors on change, and we leave more options open to make
change—even unexpected change—in the future. This is different from over-engineering and writ-
ing code that copes with every eventuality. This is code that is organized to make change easier,
not code that does everything that you can think of right now.

If I begin writing a system that does something useful and requires that I store results somewhere,
then I could do what many developers do and mix the code that does the useful things with the
code that does the storage. If I do this and then find out that the storage solution I picked is too
expensive, too buggy, or too slow, my only option is to go and rewrite all of my code.

If I separated the concerns of “something useful” from “storage,” then I may factionally increase my
line count in code. I may have to think a tiny bit harder about how to establish that separation, but I
have opened the door to incremental working and incremental decision-making.

9780137314911_print.indb 78 06/10/21 5:26 PM

ptg36503484

79Summar y

I don’t believe that I am being immodest when I tell you that I think that I am regarded by people
who have worked with me as a good programmer. Occasionally, people have called me a 10x
programmer. If these things are true, they are not true because I am cleverer than other people
or type faster or have access to better programming languages. They are true because I work
incrementally. I do what I describe here.

I am wary of over-engineering my solutions. I never aim to add code for things that I don’t know
are needed now. However, I do always try to separate the concerns in my design, break out differ-
ent parts of the system, design interfaces that abstract the ideas in the code that they represent,
and hide the detail of what happens on the other side of the interface. I strive for simple, obvious
solutions in my code, but I also have some kind of internal warning system that sounds off when my
code starts to feel too complex, too coupled, or just insufficiently modular.

I could name a few rules of thumb, such as that I don’t like functions longer than about ten lines of
code or with more than about four parameters, but these are only guides. My aim is not small, sim-
ple code, but rather code that I can change when I learn new things. My goal is code that I can grow
incrementally to fulfill its function as that function becomes clearer to me over time.

Working in ways that allow us the freedom to change our code and change our minds as our
understanding deepens is fundamental to good engineering and is what incrementalism is built
upon. Striving to be able to work incrementally then is also striving for higher-quality systems. If
your code is hard to change, it is low quality, whatever it does.

Summary
Working incrementally is fundamental from building any complex system. It is an illusion to imag-
ine that such systems spring “fully formed” from the minds of some expert or experts; they don’t.
They are the result of work and the gradual accretion of knowledge and understanding as we make
progress. Organizing our work to facilitate and validate this learning allows us to take, as yet unseen,
routes in the direction of progress. These ideas are at the core of what allows us to make progress
effectively.

9780137314911_print.indb 79 06/10/21 5:26 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

81

Empiricism
Empiricism, in the philosophy of science, is defined as “emphasizing evidence, especially as discov-
ered in experiments. It is a fundamental part of the scientific method that all hypotheses and theo-
ries must be tested against observations of the natural world rather than resting solely on a priori
reasoning, intuition, or revelation.”1

By this definition, empiricism is closely related to experiment. However, I keep both concepts in my
list of five because experiments can be carried out in such controlled circumstances that we could
easily be experimenting with ideas that don’t translate into meaningful reality, in an engineering
sense.

Even in modern physical engineering, with all of our computer models and simulations, we still see
engineers test the things that they create, often to destruction, to learn how accurate or not their
simulations are. Empiricism is a vital aspect of engineering.

For readers who are not so interested in counting angels on the head of some semantic pin, why
does this matter?

Unlike pure science, engineering is firmly rooted in the application of ideas to solving real-world
problems. I could easily decide that I needed to achieve some goal of architectural purity or some
performance target that required me to invent and explore new techniques in software, but unless
these ideas are realized in some tangible value and unless my software can do more things that
matter or deliver new value, they are irrelevant, however much I experimented with them.

1. Source: Wikipedia, https://en.wikipedia.org/wiki/Empiricism

7

9780137314911_print.indb 81 06/10/21 5:26 PM

https://en.wikipedia.org/wiki/Empiricism

ptg36503484

82 Chapter 7 Empir ic ism

Grounded in Reality
The other dimension to this is that our production systems will always surprise us, and they should!
Ideally they will not surprise us too often in very bad ways, but any software system is really only
the best guess, so far, of its developers. When we publish our software into production, this is, or
should be, an opportunity to learn.

This is an important lesson that we can learn from science and engineering in other disciplines. One
of the deeply important aspects of a scientific, rational approach to solving problems is the idea of
skepticism. It doesn’t matter who has an idea, how much we would like the idea to be true, or how
much work we have put into an idea; if the idea is bad, it is bad.

Evidence from looking at the impact of choices in software products suggests that, for the best
companies, only a fraction of their ideas produce the effects that they predicted.

Features are built because teams believe they are useful, yet in many domains most ideas fail to
improve key metrics. Only one third of the ideas tested at Microsoft improved the metric(s) they were
designed to improve.2

Empiricism, making decisions based on evidence and observations of reality, is vital to making
sensible progress. Without that analysis and reflection, organizations will continue to proceed on
the basis of only guesswork and will continue to invest in ideas that lose them money or reputation.

Separating Empirical from Experimental
We can be empirical by using the information that we gather as part of our experiments to make
decisions. We explore that aspect in the next chapter. We can also be empirical by observing the
outcome of our ideas less formally. This is not a replacement for being experimental, but rather a
way in which we can improve the quality of our characterization of the current situation at the point
when we are thinking of our next experiments.

I am aware that in exploring the ideas of empiricism and experimentation separately, I am in danger
of descending into the arcana of philosophy and etymology. This is not my intent, so let me illustrate
why it is worth considering these two closely related ideas independently with practical examples.

“I Know That Bug!”
A few years ago, I had the fantastic experience of building one of the world’s highest-performance
financial exchanges from scratch. It was during this period of my career that I started to take engi-
neering thinking and discipline seriously in my approach to software development.

2. In a paper titled “Online Experiments at Large Scale” (https://stanford.io/2LdjvmC), the authors describe how
two- to three-thirds of ideas for changes to software produced zero or negative value for the organization
that implemented them.

9780137314911_print.indb 82 06/10/21 5:26 PM

https://stanford.io/2LdjvmC

ptg36503484

83“ I K now That Bug!”

We were about to make a release into production when we found a serious bug. This was a rela-
tively unusual occurrence for us. This team employed the disciplines described in this book, includ-
ing continuous delivery, so we had constant feedback on the continual flow of small changes. We
rarely found big problems this late in the day.

Our release candidate was undergoing final checks before release. Earlier in the day, one of our col-
leagues, Darren, told us at stand-up that he had seen a weird messaging failure on his development
workstation when running our suite of API acceptance tests. He had apparently seen a thread that
was blocked in our underlying third-party pub-sub messaging code. He tried to reproduce it, and
could, but he could do so on only one particular pairing station. That was weird, because the con-
figuration of our environments was wholly automated and version controlled using a fairly sophisti-
cated infrastructure-as-code approach.

Later that afternoon, we had started work on the next set of changes. Almost immediately, our
build grid showed a dramatic change with lots of acceptance tests failing. We started exploring
what was happening and noticed that one of our services was showing a very high CPU load. This
was unusual because our software was generally extremely efficient. On further investigation, we
noticed that our new messaging code was apparently stuck. This must be what Darren had seen.
Clearly, we had a problem with our new messaging code!

We reacted immediately. We told everyone that the release candidate may not be ready for release.
We started thinking that we may have to take a branch, something that we generally tried to avoid,
and back out our messaging changes.

We did all this before we stopped and thought about it. “Hang on, this doesn’t make any sense; we
have been running this code for more than a week, and we have now seen this failure three times in
a couple of hours.”

We stopped and talked through what we knew; we collected our facts. We had upgraded the mes-
saging at the start of the iteration, and we had a thread dump that showed the messaging stalled;
so had Darren, but his dump looked stalled in a different place. We had been running all of these
tests in our deployment pipeline repeatedly and successfully for more than a week, with the mes-
saging changes.

At this point we were stuck. Our hypothesis, failing messaging, didn’t fit the facts. We needed more
facts so that we could build a new hypothesis. We started again, where we would usually start solv-
ing a problem but had omitted to on this occasion because the conclusion had looked so obvious.
We characterized our problem, so we started gathering data to tell the story. We looked at the log
files and found, as you may have guessed, an exception that clearly pointed the finger at some
brand new code.

Long story short: the messaging was fine. The apparent “messaging problem” was a symptom, not
a cause. We were actually looking at a thread dump that was in a normal waiting state and working
as it should. What had happened was that we had been hit by a threading bug in some new code,
unrelated to messaging. It was an obvious, simple fix, and we would have found it in five minutes
with no fuss if we hadn’t jumped to the conclusion that it was a messaging problem; in fact, we did
fix it in five minutes once we stopped to think and built our hypothesis based on the facts that we
had, rather than jumping to some wrong but apparently “obvious” conclusion.

9780137314911_print.indb 83 06/10/21 5:26 PM

ptg36503484

84 Chapter 7 Empir ic ism

It was only when we stopped and listed the facts of what we were seeing that we realized the
conclusions we had jumped to really didn’t fit those facts. It was this and this alone that prompted
us to go and gather more facts—enough to solve the problem we had, rather than the problem we
imagined we had.

We had a sophisticated automated test system, and yet we ignored the obvious. It was obvious
we must have committed something that broke the build. Instead, we joined together various facts
and jumped to the wrong conclusion because there was a sequence of events that led us down
the wrong path. We built a theory on sand, not validating as we went, but building new guesses on
top of old. It created an initially plausible, seemingly “obvious” cause, except that it was completely
wrong.

Science works! Make a hypothesis. Figure out how to prove or disprove it. Carry out the experiment.
Observe the results and see they match your hypothesis. Repeat!

The lesson here is that being empirical is more complex than it looks and takes more discipline to
achieve. You could imagine that when we correlated the problem Darren had seen with the fail-
ing tests we were being empirical and reacting to the messages reality was sending us. However,
we weren’t. We were jumping to conclusions and skewing the facts to fit our preferred guess at
what was going wrong. If at that point we had simply walked through “what we knew” in a more
organized way, it would have been completely obvious that this wasn’t a “messaging problem”
because our messaging changes had been working all week and hadn’t changed since they had
been working.

Avoiding Self-Deception
Being empirical requires us to be more organized in how we assemble the signals we gather from
reality and assemble them into theories that we can test through experimentation.

Human beings are remarkable, but being as smart as we are takes an enormous amount of process-
ing. Our perception of reality is not “reality,” and we have a series of biological tricks to make our
perception of reality appear to be seamless. For example, our visual sampling rate is surprisingly
slow. The smoothness of your perception of reality, as gathered through your eyes, is an illusion
created by your brain. In reality, your eyes sample a small patch of your visual field, scanning at a
rate of roughly once every couple of seconds, and your brain creates a “virtual reality” impression of
what is really going on.

Most of what you see is a guess made up by your brain. This matters because we have evolved to
fool ourselves. We jump to conclusions, now because if we had taken the time to do a detailed accu-
rate analysis of our visual field back in the days when we were fighting for survival, we would have
been eaten by a predator before we had finished.

We have all sorts of cognitive shortcuts and biases that we have evolved over millions of years to
allow us to survive in the real world. However, in the world that we have created, our modern
high-tech civilization has taken the place of the dangerous savanna populated by predators, and we
have developed a more effective way to solve problems. It is slower than jumping to often wrong

9780137314911_print.indb 84 06/10/21 5:26 PM

ptg36503484

85I nvent ing a Real i t y to Suit Our Argument

conclusions, but it is dramatically more effective at solving problems—sometimes even staggeringly
hard problems. Richard Feynman famously characterized science as follows:

The first principle is that you must not fool yourself – and you are the easiest person to fool.3

Science is not what most people think it is. It is not about large hadron colliders or modern
medicine or even physics. Science is a problem-solving technique. We create a model of the prob-
lem before us, and we check to see if everything that we currently know fits the model. We then try
to think of ways in which we can prove the model is wrong. David Deutsch says that the model is
composed of “good explanations.”4

Inventing a Reality to Suit Our Argument
Let’s look at another example of how easily we can fool ourselves.

While we were building our super-fast exchange,5 we did a lot of experimentation with the creation
of very fast software. We discovered, through experiment, lots of interesting things. Most notable
was an approach to software design that we dubbed mechanical sympathy.

In this approach, we designed our code based on a fairly deep understanding of how the underly-
ing hardware worked so that we could take advantage of it. One of several important lessons we
learned, through experimentation, was that once you had eliminated dumb mistakes,6 the most sig-
nificant impact on the raw performance of a piece of code in a modern computer was a cache-miss.

Avoiding cache-misses came to dominate our approach to design for the seriously high-
performance parts of our code.

One of the most common causes of a cache-miss for most systems that we found by measurement
was concurrency.

When we were building our exchange, a common idea in the software industry, the received
wisdom at the time ran something like this: “Hardware is approaching physical limits that mean
that CPU speed is no longer increasing. So our designs will have to ‘go parallel’ to keep them
performing well.”

There were academic papers on this topic and languages specifically designed to make parallel
programing easier and more pervasive in solving everyday programming problems. In reality, there

3. Nobel prize–winning physicist, Richard Feynman (1918–1988), https://bit.ly/2PLfEU3

4. The Beginning of Infinity” by David Deutsch, https://amzn.to/2IyY553

5. Read more about the innovative architecture of our exchange here: https://bit.ly/3a48mS3.

6. The most common performance mistake is to use the wrong kind of data structure to store something. Many
developers do not consider the time of retrieval of different kinds of collections.
For small collection sizes, a simple array (O(n) on retrieval) may be faster than something like a hash table
(with O(1) semantics). For larger collections, the O(1) solution will be best for random access. After that, the
implementation of the collections can start to have a cost.

9780137314911_print.indb 85 06/10/21 5:26 PM

https://bit.ly/2PLfEU3
https://amzn.to/2IyY553
https://bit.ly/3a48mS3

ptg36503484

86 Chapter 7 Empir ic ism

is a lot wrong with this model, as we demonstrated, but for the purpose of this story I will look at
only one aspect. There was an academic language being talked about at the time that aimed to
automatically parallelize solutions.7

A demonstration of the power of this language was shown by processing the text of a book to parse
out words from the stream of characters. Given our experience and our belief in the large costs of
concurrency, at least when the problem demands that we combine the results from the different
concurrent threads of execution, we were skeptical.

We didn’t have access to the academic language, but one of my colleagues, Mike Barker, did a sim-
ple experiment. He implemented the same algorithm that the language academics were describing
in Scala and a simple, brute-force approach in Java and then measured the results by processing the
text of Lewis Carol’s Alice in Wonderland over a series of runs.

The concurrent Scala algorithm was implemented in 61 lines of code; the Java version took 33.
The Scala version could process an impressive-sounding 400 copies of the book per second. That’s
impressive until you compare it to the simpler, easier to read, single-threaded code in Java that
could process 1,600 copies per second.

The language researchers had started with a theory—that parallelism was the answer—but they
had gotten so caught up in an implementation that they never thought to test their starting prem-
ise, which was that this would result in a faster outcome. It resulted in a slower outcome and more
complex code.

7. Presentation outlining automatic parallelization: https://bit.ly/35JPqVs

Separating Myth from Reality: Example

It is understood that CPU development has reached a limit and that ever-increasing clock-cycle
speedups have paused. Clock cycles have not increased since around 2005! There are good
reasons for this, based on the physics of making transistors out of silicon. There is a relationship
between the density of the transistors and the heat that they generate in operation. Building a
chip that goes much faster than 3GHz means that overheating becomes a serious problem.

So if we can’t get speed gains by increasing the rate at which we process instructions linearly in
our CPUs, we can parallelize, and the processor manufacturers have. This is good: modern pro-
cessors are marvelous devices, but how do we use all that power? We can do work in parallel!

This is fine for running unconnected, independent processes, but what if you want to build a
fast algorithm? The obvious conclusion (guess) is that it is inevitable that the solution to this
problem is to parallelize our algorithms. In essence, the idea here is that we can speed things up
by throwing more threads of execution at the problems that we tackle.

There have been several general-purpose programming languages built upon this assumption
to help us to more effectively write parallel solutions to problems.

M07_Farley_C07_p081-090.indd 86 07/10/21 1:34 PM

https://bit.ly/35JPqVs

ptg36503484

87I nvent ing a Real i t y to Suit Our Argument

Unfortunately, this is a much more complex problem than it looks. For some unusual tasks,
parallel execution is the answer. However, as soon as there is any need to bring the information
from those different threads of execution back together again, the picture changes.

Let us gather some feedback. Instead of jumping to the conclusion that parallelizing things is
the answer, let us gather some data.

We could try something simple. For example, let’s write a trivially simple algorithm to increment
a simple integer 500 million times.

Without any feedback, it seems obvious that we could throw lots of threads at this problem.
However, when you carry out this experiment and gather the data (feedback), the results may
surprise you:

Method Time (ms)

Single thread 300

Single thread with lock 10,000

Two threads with lock 224,000

Single thread with CAS 5,700

Two threads with CAS 30,000

The table shows the result of this experiment carried out using different approaches. First, the
baseline test. Write the code on a single thread and increment a long value. It takes 300 ms to
get to 500 million.

As soon as we introduce the code to synchronize things, we start to see some costs that we
hadn’t anticipated (unless we are low-level concurrency experts). If we still do all the work on a
single thread but add a lock to allow the results to be used from a different thread, it adds 9,700 ms
to the cost. Locks are extremely expensive!

If we decide to divide up the work between only two threads and synchronize their results, it is
746 times slower than doing the work on a single thread!

So locks are extremely expensive. There are more difficult to use, but more efficient, ways to
coordinate the work between threads. The most efficient way to do this is a low-level concur-
rency approach called compare-and-swap (CAS). Sadly, even this approach is 100 times slower
than work on a single thread.

Based on this feedback, we can make more informed, evidence-based decisions. If we want to
maximize the rate at which an algorithm makes progress, we should try to keep as much work
as possible on a single thread, unless we can make progress and never join the results back
together again.

(This experiment was first carried out by Mike Barker when we worked together a few years
ago.)

9780137314911_print.indb 87 06/10/21 5:26 PM

ptg36503484

88 Chapter 7 Empir ic ism

The example in the preceding sidebar is a demonstration of several of the concepts at the heart of
this book. It demonstrates the importance of feedback, experimentation, and empiricism.

Guided by Reality
The researchers in this scenario were acting with good intent, but they had fallen into the trap that
is pervasive, outside of the realms of science and engineering: they had come up with a guess to
solve the problem and then rushed ahead to implement their guess without checking first to see if
their guess was right or wrong.

It took Mike a few hours of coding, using the researcher’s own sample problem, to show that their
assumed solution didn’t make sense. Being skeptical and checking our ideas is work, but it is the
only way to make real progress rather than proceeding on guesswork, supposition, and hubris.

The best way to start is to assume that what you know, and what you think, is probably wrong
and then figure out how you could find out how it is wrong.

The programming-language academics in this story had bought into a myth that was not grounded
in reality. They had built their model for parallelizing programming languages, because it was a cool
problem to solve if you were a language academic.

Unfortunately, this did not take into account the costs of parallelism; they had ignored the reality
of modern computer hardware and computer science. It has long been understood that parallelism
costs when you need to “join results back together.” Amdahl’s law shows that there is a harsh limit to
the number of concurrent operations that make sense, unless they are wholly independent of one
another.

The academics assumed that “more parallelism is good,” but that is an idea that is based on some
kind of imaginary, theoretical machine, where the costs of concurrency were low; such machines
don’t exist.

These academics were not being empirical, though they were being experimental. This lack of
empiricism meant that their experiments were the wrong experiments, so the model that they built
did not match real-world experience.

Empiricism is the mechanism through which we can sense-check the validity of our experiments. It
helps us to place them into context and, in effect, test the validity of the simulations of reality at the
heart of our experiments.

9780137314911_print.indb 88 06/10/21 5:26 PM

ptg36503484

89Summar y

Summary
Engineering rather than pure science demands of us some consideration of the practicality of our
solutions. This is really where empiricism comes into play. It is not enough to look only at the world,
make guesses based on what we see, and then assume that our guesses must be correct because
we got the information that informed them from the real world. That is poor science and poor engi-
neering. However, engineering is a practical discipline. So we must, continually, be skeptical about
our guesses, and the experiments that we create to test them, and check them against our experi-
ence of reality.

9780137314911_print.indb 89 06/10/21 5:26 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

91

Being Experimental
Experimentation is defined as “a procedure carried out to support, refute, or validate a hypothesis.
Experiments provide insight into cause-and-effect by demonstrating what outcome occurs when a
particular factor is manipulated.”1

Taking an experimental approach to solving problems is profoundly important. I would argue that
science, and the experimental practice at its heart, is what differentiates our modern, high-tech
society from the agrarian societies that preceded us, more than anything else. Human beings have
existed as a distinct species for hundreds of thousands of years, and yet the rate of progress that
we have made in the last 300 or 400 years since Newton or Galileo, periods that most people would
mark as the beginning of modern science, has outstripped everything that went before by many
orders of magnitude. There are estimates that the whole of human knowledge doubles every 13
months in our civilization.2

In large part this is because of the application of humanity’s best problem-solving technique.

Most software development, though, does not really work this way. Most software development
is consciously carried out as an exercise in craft where someone guesses what users may like. They
guess about a design and/or technology that could achieve their product goals. Developers then
guess about whether the code that they write does what they mean it to, and they guess about
whether there are any bugs in it. Many organizations guess about whether their software is useful
or made more money than it cost to build it.

We can do better. We can use guesses where they are appropriate, but then we can design experi-
ments to test the guesses.

1. Source: Wikipedia, https://en.wikipedia.org/wiki/Experiment

2. Buckminster Fuller created the knowledge doubling curve: https://bit.ly/2WiyUbE.

8

9780137314911_print.indb 91 06/10/21 5:26 PM

https://en.wikipedia.org/wiki/Experiment
https://bit.ly/2WiyUbE

ptg36503484

92 Chapter 8 Being Exper imental

This sounds slow, expensive, and complex, but it is not. This is really only a shift in approach and
mindset. This is not about “working harder”; this is about “working smarter.” The teams that I have
seen that have worked this way and taken these ideas to heart are not slow or overly academic.
They are, though, more disciplined in the way that they approach problem-solving, and as a result,
they find better, cheaper solutions to problems more quickly and produce software with greater
quality that pleases their users more.

What Does “Being Experimental” Mean?
One of the key ideas that is at the root of scientific thinking is to move away from decisions made
by authority. Richard Feynman, as ever, has a great quote on this topic:

Science is the belief in the ignorance of experts.

He also said:

Have no respect whatsoever for authority; forget who said it and instead look what he starts with,
where he ends up, and ask yourself, ‘Is it reasonable?’

Despite the somewhat sexist language of his time, the sentiment is correct.

We must move away from making decisions based on what the most important, charismatic, or
famous people say, even if it is Richard Feynman, and instead make decisions and choices based on
evidence.

This is a big change for our industry and not how it usually works. Sadly, this is also true of society at
large, not just software development, so if we are to succeed as engineers, we must do better than
society at large.

What made you pick the programming language that you use or the framework or the editor in
which you write your code? Do you have conversations in which you argue about the relative merits
of Java versus Python? Do you think everyone who uses VI as their editor is smart or a fool? Do you
think that functional programming is the one true way, or do you believe that object orientation is
the best thing ever invented? Yes, me too!

I am not proposing for every such decision that we should create an exhaustive, controlled experi-
ment, but we should stop having religious wars about these things.

If we want to make the argument that Clojure is better than C#, why not do a little trial and measure
the stability and throughput of the result? At least then we could decide on some basis of evidence,
even if not perfect, rather than make decisions like this on the basis of who was most persuasive in
the argument. If you disagree with the results, do a better experiment and show your reasoning.

Being experimental does not mean basing every decision on hard physics. All sciences are based on
experiment, but the degree of control varies. In engineering, experimentation remains at its heart,
but is a pragmatic, practical form of experimentation.

9780137314911_print.indb 92 06/10/21 5:26 PM

ptg36503484

93Feedback

Four characteristics define “being experimental” as an approach:

• Feedback: We need to take feedback seriously, and we need to understand how we will col-
lect results that will provide us with a clear signal and deliver them efficiently back to the
point at which we are thinking. We need to close the loop.

• Hypothesis: We need to have an idea in mind that we are aiming to evaluate. We are not wan-
dering around willy-nilly, randomly collecting data. That is not good enough.

• Measurement: We need a clear idea of how we will evaluate the predictions that we are test-
ing in our hypothesis. What does “success” or “failure” mean in this context?

• Control the variables: We need to eliminate as many variables as we can so that we can
understand the signals that our experiment is sending to us.

Feedback
It is important, from an engineering perspective, to recognize the effect that speeding the efficiency
and quality of feedback can give.

The Need for Speed

I once worked at a company that produced complex, financial trading software. The developers
were very good, and the company successful, but still they knew that they could do better, and
my job was to help to improve their software development practices.

When I joined, they had adopted a reasonably effective approach to automated testing. They
had lots of tests. They operated an overnight build, and the bulk of their offering consisted of a
large C++ build, which took nine-and-a-half hours to complete, including running all the tests.
So they ran the build every night.

One of the developers told me that in the three years that they had been working this way,
there had been only three occasions when all the tests passed.

So, each morning they would pick the modules where all the tests had passed and release
those, while holding back modules that had produced a test failure.

This was fine, as long as one of the passing modules didn’t rely on changes in one of the failing
modules, and sometimes they did.

There were lots of things that I wanted to change, but as a first step, we worked to improve the
efficiency of the feedback, with no other changes.

9780137314911_print.indb 93 06/10/21 5:26 PM

ptg36503484

94 Chapter 8 Being Exper imental

After a lot of experimentation and hard work, we managed to get a fast-stage, commit build to
run in 12 minutes and the rest of the tests to run in 40 minutes. This was doing the same work
as the nine-and-a-half-hour build, only faster! There were no other changes in organization,
process, or tooling, beyond speeding up the build and getting the results more efficiently to
developers.

In the first two-week period following the release of this change, there were two builds where
all tests passed. In the two weeks after that, and for as long as I worked there, there was at least
one build per day where all tests passed and all the code was releasable.

Making no other change than improving the speed of the feedback gave the teams the tools
that they needed to fix the underlying instability.

The “war story” in the box “The Need for Speed” is a good demonstration of the effectiveness of
applying the techniques of experimentation to our work, as well as optimizing for good feedback.
In this case, we experimented to improve the efficiency and quality of the feedback to developers.
During the course of this work we established better measures of build performance, controlled the
variables with improved version control and infrastructure as code, and A/B tested several different
technical solutions and build systems.

It was only through taking a fairly disciplined approach to applying this kind of experimental
thinking to this problem—a problem that various attempts had tried to improve on before—that
we were able to make progress. Several of our ideas didn’t pan out. Our experiments showed us
that it was no good investing lots of time and effort on certain tools or techniques, because they
wouldn’t give us the speedups that we needed.

Hypothesis
When talking about science and engineering, people often talk about “eliminating guesswork.” I
am guilty of using that phrase in the past, too. It is wrong, though. In one important sense, science
is built on guesswork; it is just that a scientific approach to problem-solving institutionalizes the
guesswork and calls it a hypothesis. As Richard Feynman so eloquently put it in his wonderful lecture
on the scientific method3:

We look for a new law by the following process, first we guess it!

Guesses or hypotheses are the starting point. The difference between science and engineering,
compared with other less effective approaches, is that the others stop there.

To be scientific, once we have a guess, in the form of a hypothesis, we start making some
predictions, and then we can try to find ways to check those predictions.

3. Nobel Prize–winning physicist Richard Feynman on the scientific method: https://bit.ly/2RiEivq

9780137314911_print.indb 94 06/10/21 5:26 PM

https://bit.ly/2RiEivq

ptg36503484

95Measurement

Feynman goes on, in that great presentation, to say this:

If your guess disagrees with experiment, then it (your guess) is wrong!

That is the heart of it! That is where we need to get to in order to be able to claim that what we do is
engineering rather than guesswork.

We need to be able to test our hypotheses. Our tests can take a variety of forms. We can observe
reality (production), or we can carry out some more controlled experiment, perhaps in the form of
an automated test of some kind.

We can focus on getting good feedback from production to inform our learning, or we can try our
ideas in more controlled circumstances.

Organizing our thinking, and our work, to proceed as a series of experiments to validate our hypoth-
eses is an important improvement in the quality of our work.

Measurement
Whether we are collecting data to interpret from reality (production) or carrying out a more
controlled experiment, we need to take measurement seriously. We need to think about what the
data that we collect means and be critical of it.

It is too easy to fool ourselves by trying to “fit the facts to the data.” We can achieve some level of
protection from such mistakes by thinking carefully, as part of the design of our experiment, what
measurements we think will make sense. We need to make a prediction, based on our hypothesis,
and then figure out how we can measure the results of our prediction.

I can think of lots of examples of measuring the wrong things. At one of my clients, they decided
that they could improve the quality of their code by increasing the level of test coverage. So, they
began a project to institute the measurement, collected the data, and adopted a policy to encour-
age improved test coverage. They set a target of “80 percent test coverage.” Then they used that
measurement to incentivize their development teams, bonuses were tied to hitting targets in test
coverage.

Guess what? They achieved their goal!

Some time later, they analyzed the tests that they had and found that more than 25 percent of their
tests had no assertions in them at all. So they had paid people on development teams, via their
bonuses, to write tests that tested nothing at all.

In this case, a much better measure would have been stability. What this organization really wanted
was not more tests but better quality code, so measuring that more directly worked better.

This difficulty in measuring the wrong things does not only apply to “metrics” and human beings’
cleverness at gaming the system.

I spent more than ten years of my career working in low-latency finance systems. When we started
out, we were very focused on measuring latency and throughput, so we worked hard to capture

9780137314911_print.indb 95 06/10/21 5:26 PM

ptg36503484

96 Chapter 8 Being Exper imental

measurements, setting ourselves targets like “The system should be able to process 100,000
messages per second with no more than 2ms latency.” Our first attempts were based on averages,
which we later found out were meaningless. We needed to be more specific; there were times in the
subsequent trading cycle when our peak load far exceeded the equivalent rate of 100,000 msg/sec,
peaking in numbers that were equivalent to millions of msg/sec. Average latency didn’t matter if
there were outliers beyond certain limits. In the real world of high-frequency trading, 2ms wasn’t an
average—that was the limit!

In this second example, we started out being experimental, but, in part due to the accuracy of
our measurement, even though we were measuring some of the wrong things, we quickly started
to learn and improve the quality and accuracy of our measurements and to better target our
experiments. It’s all about learning!

Not everyone cares to this degree of precision in measurement, but the principles remain the
same, whatever kind of software you are building. Being experimental demands that we pay more
attention to the measurement of our system, whatever that means in our context.

Controlling the Variables
To gather feedback and make useful measurements, we need to control the variables, as far as we
practically can. When Jez Humble and I wrote our book Continuous Delivery, we subtitled it Reliable
Software Releases Through Build, Test, and Deployment Automation. I don’t think that I thought of
it like this at the time, but what this is really saying is “control the variables to make your releases
reliable.”

Version control allows us to be more precise about the changes that we release into production.
Automated testing allows us to be more precise about the behavior, speed, robustness, and general
quality of the software that we produce. Deployment automation and ideas like infrastructure as
code allow us to be more precise about the environments in which our software operates.

All these techniques allow us to be much more sure that when we put our software into production,
it will do what we intend.

My take on continuous delivery as a generalized approach to software development is that it
allows us to proceed with much more surety. It eliminates, to a large extent, the variables around
the quality of our work so that we can concentrate on whether our product ideas are good. We can
get a much clearer picture of “are we building the right things” because we have taken control of
“are we building the things right.”

By controlling many of the technical variables in software development, continuous delivery allows
us to make progress with significantly more confidence than before. This allows software develop-
ment teams to take real advantage of the techniques of optimizing for learning that are at the heart
of this book.

For example, a continuous delivery deployment pipeline is an ideal experimental platform for
learning about the changes that we want to make to our production systems.

9780137314911_print.indb 96 06/10/21 5:26 PM

ptg36503484

97Automated Test ing as Exper iments

Working so that our software is always in a releasable state, the idea at the heart of CD is an idea
that maximizes the feedback that we can get on the quality of our work and one that strongly
encourages us to work in smaller steps. This, in turn, means that we are pretty much forced to work
iteratively and incrementally.

Having software that is always in a releasable state, well, it would be foolish of us not to take
advantage of that! It means that organizations can release more frequently and gather a lot more
feedback, a lot sooner, on the quality of their ideas and build better products.

Automated Testing as Experiments
Experiments can take many forms, but in software we have an enormous advantage over every
other discipline in that we have this fantastic experimental platform: a computer!

We can run literally millions of experiments every second if we want. These experiments too, may
take a variety of different forms; we can think of the compilation step as a form of experiment:
“I predict that my code will compile without any warnings” or “I predict that none of my UI code
accesses a database library.” By far the most flexible form of experiment, though, in the context of
software, is an automated test.

Any automated test to validate our software could be considered an experiment if you try hard
enough. However, if you write your automated tests after you have written the code, the value
of the experiment is reduced. An experiment should be based on some kind of hypothesis, and
deciding if your code works or not is a pretty lame hypothesis.

What I am thinking of is organizing our development around a series of iterative experiments
that make tiny predictions about the expected behavior of our code, and that will allow us to
incrementally increase the function of our software.

The clearest form of such an experiment is software development guided by tests, or test-driven
development (TDD).

TDD is an effective strategy where we use tests as executable specifications for the behavior of our
system. Precisely defining the change in behavior that we are aiming to achieve is our hypothesis:
“given this specific context, when this thing happens, then we expect this outcome.” We create this
prediction, in the form of a small, simple test, and then confirm that the predictions of our test case
were met when we complete the code and carry out the experiment.

We can operate this TDD approach at different levels of granularity. We can begin by creating
user-centered specifications, using the techniques of acceptance test–driven development
(ATDD), sometimes also referred to as behavior-driven development (BDD). We use these high-
level executable specifications to guide the more fine-grained, more technical unit testing.

9780137314911_print.indb 97 06/10/21 5:26 PM

ptg36503484

98 Chapter 8 Being Exper imental

Software developed using these techniques has significantly and measurably fewer bugs than
software developed more conventionally.4

This is a welcome improvement in quality, but we don’t really see the value until we also factor in
the impact that such reductions have on productivity. Presumably, as a result of this reduction in
defects, development teams spend significantly less time on other activities, such as bug detection,
triage, and analysis.

The result is that high-performing teams that employ techniques like TDD, continuous integration,
and continuous delivery spend 44 percent more time on useful work.5 These teams are much more
productive than the norm while, at the same time, producing a higher-quality outcome. You can
have your cake and eat it!

The practices of extreme programming in the context of continuous delivery, specifically continu-
ous integration and TDD, provide a wonderful, scalable, experimental platform in which we can
evaluate and refine our ideas in design and implementation. These techniques have an important,
significant impact on the quality of our work and the rate at which we can produce good software.
These are the kinds of outcomes that in other disciplines we would ascribe to engineering.

Putting the Experimental Results of Testing into Context
Forgive me for being a little philosophical for a moment, but then I expect you are getting used to
that by now.

Let’s think about what a body of tests, like those I just described, really means.

I am making a claim for scientific rationality as a guiding principle of the approach that I am
attempting to describe here. A common mistake of software developers, and maybe people in
general, is that as soon as we mention “science” we almost always think “physics.”

I am an amateur physics nerd. I love physics and the mental models it allows me to construct to
understand the things around me. I sometimes joke about physics being the one true science, but I
don’t mean it.

Science is much broader than only physics, but outside the realms of the simplified abstractions
that we use at the heart of physics, other sciences are often messier and less precise. That does not
diminish the value of scientific-style reasoning. Biology, chemistry, psychology, and sociology are
all sciences, too. They don’t make predictions with the same accuracy as physics because they can’t
control the variables quite as rigorously in experiment, but they still provide deeper insight and

4. There are several studies, academic and informal, on the impact of TDD on defect reduction. Most studies
agree that defect reduction is in a range from 40 percent to well over 250 percent. Source: https://bit.ly/
2LFixzS, https://bit.ly/2LDh3q3, https://bit.ly/3MurTgF

5. Source: “State of DevOps” reports (various years) and Accelerate: The science of Lean and DevOps by Fosgren,
Humble, and Kim. See https://amzn.to/369r73m.

9780137314911_print.indb 98 06/10/21 5:26 PM

https://bit.ly/2LFixzS
https://bit.ly/2LFixzS
https://bit.ly/2LDh3q3
https://bit.ly/3MurTgF
https://amzn.to/369r73m

ptg36503484

99Putt ing the Exper imental Results of Test ing into Contex t

better results than the alternatives. I am not for a moment expecting us to be as thorough or as pre-
cise as physics.

Nevertheless, in software we have some profound advantages over nearly every other form of
engineering, and several of the sciences, where experiments are often difficult for ethical or practi-
cal reasons. We can completely create and control the “universe” that our software inhabits. We can
exercise delicate, precise control if we choose to do so. We can create millions of experiments, at low
cost, allowing us to use the power of statistics to our advantage. Simplistically, this is what modern
machine learning really is.

Computers give us the opportunity to take control of our software and carry out experiments on it
at scales that would be unimaginable in any other context.

Finally, there is one more, quite profound ability that software gives to us.

So we aren’t going to be physicists, but let’s imagine for a moment that we are. If you and I come up
with a new idea in physics, how do we know if it is a good one? Well, we need to be sufficiently well
read to understand that it fits with the facts as physics currently understands them. It is no good
suggesting that “Einstein was wrong” if we don’t know what Einstein said. Physics is a vast subject,
so however well read we are, we will need to get the idea clearly enough described that it is repro-
ducible by others so that they can test it, too. If any test of the idea fails, after checking that it wasn’t
a mistake in the testing, we can reject the idea.

In software, we can do all of that with our tests, and instead of it taking months or years for our
ideas to bear fruit, we can get results in minutes. This is our super-power!

If we think of our software existing in a tiny universe that we create, however big or complex the
software, then we can control that universe precisely and evaluate our software’s role in it. If we
work to be able to “control the variables” to the extent that we can reliably and repeatably re-create
that universe—infrastructure as code as a part of a continuous delivery deployment pipeline, for
example—then we have a good starting point for our experiments.

The full set of all the tests that we have written, including the collection of experiments asserting
our understanding of the behavior of our system in that controlled universe, is our body of knowl-
edge of the system.

We can give the definition of the “universe” and the “body of knowledge” to anyone, and they can
confirm that they are, as a whole, internally consistent—the tests all pass.

If we want to “create new knowledge” in the system, we can create a new experiment, a test, that
defines the new knowledge that we expect to observe, and then we can add that knowledge in the
form of working code that meets the needs of the experiment. If the new ideas are not consistent
with previous ideas, meaning the “body of knowledge” in our mini, controlled universe, then experi-
ments will fail, and we will know that this idea is wrong, or at least inconsistent with the recorded
statement of the knowledge in the system.

Now, I recognize that this is a somewhat idealistic representation of a software system and its asso-
ciated tests, but I have worked on several systems that got very close to this ideal. However, even if

9780137314911_print.indb 99 06/10/21 5:26 PM

ptg36503484

100 Chapter 8 Being Exper imental

you got only 80 percent of the way there, think of what this means. You have an indication, within
minutes, of the validity and consistency of your ideas, system-wide.

As I said earlier, this is our super-power. This is what we can do with software if we treat it as an
engineering process, rather than one based on craft alone.

Scope of an Experiment
Experiments come in all sizes. We can do something tiny, almost trivial, or we can do something big
and complicated. Sometimes we need both of these things, but the idea of “working in a series of
experiments” sounds daunting to some people.

Let me describe one common type of experiment that I regularly perform in my own software
development to put your mind to rest.

When practicing TDD, I begin an intended change to my code with a test. The aim is to create a fail-
ing test. We want to run the test and see it fail to check that the test is actually testing something.
So I begin by writing the test. Once I have the test as I want it, I will predict the exact error message
that I expect the test to fail with: “I expect this test to fail with a message saying ‘expected x but was
0’” or something similar. This is an experiment; this is a tiny application of the scientific method.

• I thought about and characterized the problem: “I have decided on the behavior that I want of
my system and captured it as a test case.”

• I formed a hypothesis: “I expect my test to fail!”

• I made a prediction: “When it fails, it will fail with this error message….”

• I carried out my experiment: “I ran the test.”

This is a tiny change from how I worked before, but it has had a significant, positive impact on the
quality of my work.

Applying a more disciplined, experimental approach to our work need not be complex or onerous.
If we are to become software engineers, we need to adopt disciplines like this and apply them
consistently to our work.

Summary
A key attribute of working in a more experimental way is the degree to which we exert control over
the variables involved. Part of the definition of “experimentation” at the start of this chapter is “dem-
onstrating what happens when a particular factor is manipulated.” To work more experimentally,
we need our approach to our work to be a little more controlled. We’d like the results of our “experi-
ments” to be reliable. In the technical context of the systems that we build, working experimentally

9780137314911_print.indb 100 06/10/21 5:26 PM

ptg36503484

101Summar y

and taking control of what variables that we can, through effective automated testing and continu-
ous delivery techniques like infrastructure as code, make our experiments more reliable and repeat-
able. More profoundly, though, they also make our software more deterministic, and so higher
quality, more predictable, and reliable in use.

Any software engineering approach worth its name must result in better software for the same
amount of work. Organizing our work as a sequence of many small, usually simple, experiments
does this.

9780137314911_print.indb 101 06/10/21 5:26 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

III
OPTIMIZE FOR MANAGING

COMPLEXITY

9780137314911_print.indb 103 06/10/21 5:26 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

105

Modularity
Modularity is defined as “the degree to which a system’s components may be separated and
recombined, often with the benefit of flexibility and variety in use.”1

I have been writing code for a long time, and from the beginning of my learning, even when writing
simple video games in assembly language, modularity was lauded as important in the design of our
code.

Yet, much of the code that I have seen—in fact most of the code that I have seen and maybe even
some of the code that I have written—has been far from modular. At some point this changed for
me. My code is always modular now; it has become an ingrained part of my style.

Modularity is of vital importance in managing the complexity of the systems that we create. Modern
software systems are vast, complicated, and often genuinely complex things. Most modern systems
exceed the capacity of any human being to hold all of the details in their heads.

To cope with this complexity, we must divide the systems that we build into smaller, more under-
standable pieces—pieces that we can focus on without worrying too much about what is going on
elsewhere in the system.

This is always true, and again this is a kind of fractal idea that operates at different granularities.

As an industry, we have made progress. When I began my career, computers, and their software,
were simpler, but we had to work harder to get things done. Operating systems did little beyond
providing access to files and allowing us to show text on the screen. Anything else we needed to do

1. Source: Dictionary definition from Merriam-Webster. Used with Permission. Wikipedia, https://en.wikipedia
.org/wiki/Modularity.

9

M09_Farley_C09_p103-120.indd 105 13/10/21 7:32 PM

https://en.wikipedia.org/wiki/Modularity
https://en.wikipedia.org/wiki/Modularity

ptg36503484

106 Chapter 9 Modular i t y

had to be written from scratch for every program. Want to print something out? You need to under-
stand and write the low-level interactions with your specific printer.

We have certainly moved on by improving the abstraction and modularity of our operating systems
and other software.

Yet, lots of systems don’t look modular themselves. That is because it is hard work to design modu-
lar systems. If software development is about learning, then, as we learn, our understanding evolves
and changes. So it is possible, probable even, that our views on which modules make sense and
which don’t will change over time, too.

For me, this is the real skill of software development. This is the property that most differentiates the
code written by experts, masters of their craft, from that written by neophytes. While it takes skill to
achieve good modularity in our designs, what I perceive in a lot of the code that I see is that people
don’t just “do modularity badly,” but, rather, they “don’t attempt it at all.” A lot of code is written as
though it is a recipe, meaning a linear sequence of steps collected together in methods and func-
tions spanning hundreds or even thousands of lines of code.

Imagine for a moment if we turned on a feature, in your codebase, that rejected any code that
contained a method longer than 30 lines of code or 50 or 100? Would your code pass such a test? I
know that most of the code that I have seen in the wild would not.

These days when I begin a software project, I will establish a check in the continuous delivery
deployment pipeline, in the “commit stage,” that does exactly this kind of test and rejects any com-
mit that contains a method longer that 20 or 30 lines of code. I also reject method signatures with
more than five or six parameters. These are arbitrary values, based on my experience and prefer-
ences with the teams that I have worked on. My point is not to recommend these specific values;
rather, it is that “guiderails” like these are important to keep us honest in our design. Whatever the
time pressure, writing bad code is never a time-saver!

Hallmarks of Modularity
How can you tell if your system is modular? There is a simplistic level in the sense that a module is
a collection of instructions and data that can be included in a program. That captures the “physical”
representation of the bits and bytes that form the module.

More practically, though, what we are looking for is something that divides our code into little com-
partments. Each compartment can be reused multiple times, perhaps in a variety of contexts.

The code in a module is short enough to be readily understood as a stand-alone thing, outside the
context of other parts of the system, even if it needs other parts of the system to be in place to do
useful work.

There is some control over the scope of variables and functions that limit access to them so that
there is a notion in some sense of there being an “outside” and an “inside” to the module. There is
an interface of some kind that controls access, manages communication with other code, and deals
with other modules.

9780137314911_print.indb 106 06/10/21 5:26 PM

ptg36503484

107Under valuing the I mpor tance of Good Design

Undervaluing the Importance of Good Design
There are a few reasons why many software developers don’t pay attention to ideas like these. As an
industry, we have undervalued the importance of software design. We obsess over languages and
frameworks. We have arguments over IDEs versus text editors or object-oriented programming ver-
sus functional programming. Yet none of these things comes close to being as important, as foun-
dational, as ideas like modularity or separation of concerns to the quality of our output.

If you have code with good modularity and good separation of concerns, whatever the program-
ming paradigm, language, or tools, it will be better, easier to work on, easier to test, and easier to
modify as you learn more about the problem that you are trying to solve. It will also be more flex-
ible in use than code that does not have these properties.

My impression is that either we don’t teach these skills at all or there is something inherent in
programming (or programmers) that makes us dismiss their importance.

Clearly, designing for modularity is a different kind of skill to knowing the syntax of a programming
language. It is a skill that we need to work on if we hope to develop some degree of mastery, and
we can spend a lifetime and probably never perfect it.

This, though, is to me what software development is really about. How can we create code and
systems that will grow and evolve over time but that are appropriately compartmentalized to limit
damage if we make a mistake? How do we create systems that are appropriately abstracted so that
we can treat the boundaries between our modules as opportunities to enhance our systems rather
than liabilities that prevent us from changing them?

This is an important point in the thesis of this book.

I once taught a class on test-driven development (TDD). I was attempting to demonstrate how
TDD could help us reduce the complexity in our designs when one of the course attendees (I won’t
call them a programmer) asked why it mattered if the code was less complex. I confess that I was
shocked. If this person didn’t see the differences in impact and value between obtuse, complex
code and clear, simple code, then they have a different view of our job than I do. I did my best to
answer his question, talking about the importance of maintainability and the advantages in terms
of efficiency, but I am not convinced that my arguments made much impression.

Fundamentally, complexity increases the cost of ownership for software. This has a direct economic
impact as well as a more subjective one: complex code isn’t as nice to work on!

The real issue here, though, is that complex code is, kind of by definition, more difficult to change.
That means you have one chance to get it right when you write it the first time. Also, if my code is
complex, then I probably don’t really understand it as well as I think that I do; there are more places
for mistakes to hide.

If we work to limit the complexity of the code that we write, we can make mistakes and have a bet-
ter chance of correcting them. So either we can bet on our own genius and assume that we will get
everything perfectly correct at the start, or we can proceed more cautiously. We start by assuming

9780137314911_print.indb 107 06/10/21 5:26 PM

ptg36503484

108 Chapter 9 Modular i t y

that there will be things that we didn’t think of, misunderstandings, and changes in the world that
mean that we will likely need to revisit our code one day. Complexity costs!

It is important that we are open to new ideas. It is important that we continually question our
assumptions. However, that doesn’t mean that all ideas have equal merit. There are dumb ideas, and
they should be dismissed; there are great ideas, and they should be valued.

Knowing the syntax of a language is not enough to be a “programmer,” let alone to be a good pro-
grammer. Being “idiomatic in language X” is less valuable and less important than high—quality in
design. Knowing the abstruse details of “API Y” does not make you a better software developer; you
can always look up the answer to that kind of question!

The real skills—the things that really differentiate great programmers from poor programmers—are
not language-specific or framework-specific. They lie elsewhere.

Any programming language is only a tool. I have been privileged to work with a few world-class
programmers. These people will write good code in a programming language that they have never
used before. They will write nice code in HTML and CSS or Unix shell scripts or YAML. One of my
friends even writes readable Perl!

There are ideas that are deeper and more profound than the language used to express them.
Modularity is one of these ideas; if your code is not modular, it is almost certainly not as good
as code that is!

The Importance of Testability
I was an early adopter of TDD, taking my first tentative steps in that direction in response to Kent
Beck’s book Extreme Programming Explained published in 1999. My team experimented with Kent’s
intriguing ideas and got them wrong that same year. Nevertheless, we got great benefit from the
approach.

TDD is one of the most significant steps that software development practice has taken during my
career. The confusing thing is that the reason I value it so highly has little to do with “testing” as we
would usually conceive it. In fact, I now think that Kent Beck made a mistake including “test” in the
name of the practice, at least from a marketing perspective. And no, I don’t know what he should
have called it instead!

Chapter 5 described how we can get fast, accurate feedback on the quality of our designs from our
tests and how making our code testable enhances its quality. This is an enormously important idea.

There are a few things, beyond the good taste of an experienced, skilled programmer, that can give
us early feedback on the quality of our design. We may learn weeks, months, or years later that our
design is good or bad when we attempt to change it, but short of that, there are no objective mea-
sures that indicate quality, unless, that is, we attempt to drive our design from tests.

9780137314911_print.indb 108 06/10/21 5:26 PM

ptg36503484

109Designing for Testabi l i t y I mproves Modular i t y

If our tests are difficult to write, it means that our design is poor. We get a signal, immediately. We
get feedback on the quality of our design as we attempt to refine it for the next increment in behav-
ior. These lessons are delivered automatically to us if we follow the Red, Green, Refactor discipline
of TDD. When our tests are hard to write, our design is worse than it should be. If our tests are easy
to write our code, the stuff that we are testing inevitably exhibits the properties that we value as
hallmarks of high quality in code.

Now, this does not imply that a test-driven approach to design will automatically create great
design. It is not a magic wand. It still relies upon the skill and experience of the designer. A great
software developer will still create a better outcome than a poor one. What driving our designs
from tests does is encourage us to create testable code and systems and so, given the limits of our
experience and talent, enhances the outcome.

We don’t have any other techniques I can think of that really do that to a similar extent! This talent
amplifier then is an important tool if we are to move from craft to engineering.

If we aspire to be engineers, advising people to “do better” is not enough. We need tools that will
guide us and help us achieve a better outcome. Striving for testability in our systems is one such
tool.

Designing for Testability Improves Modularity
Let’s get back on topic and think about this specifically in the context of modularity. How does
designing to achieve testability encourage greater modularity?

If I want to test the effectiveness of the airfoil of a wing on an airplane, I can build the airplane and
go flying. This is a terrible idea that even the Wright Brothers, who built the first powered, controlled
airplane, realized wouldn’t work.

If you take this rather naive approach, then you have to do all of the work first before you learn any-
thing. When you try to learn this way, how will you measure the effectiveness of this airfoil versus
another? Build another airplane?

Even then, how do you compare the results? Maybe the wind was gustier when you flew the
first prototype versus the second. Maybe your pilot had a bigger breakfast on the first flight than
the second. Perhaps the air pressure or the temperature varied, so the wings delivered different
amounts of lift because of that. Maybe the fuel batch was different between the two, so the engine
was producing different power levels. How can you manage all these variables?

If you take this whole-system, waterfall approach to solving this problem, the complexity of the sys-
tem is now expanded to encompass the entire environment in which the airfoil operates.

The way to scientifically measure an airfoil is to take control of these variables and standardize them
across your experiments. How can we reduce the complexity so that the signals that we get back
from our experiment are clear? Well, we could put the two airplanes into a more controlled environ-
ment, maybe something like a big wind tunnel. That would allow more precise control of the airflow

9780137314911_print.indb 109 06/10/21 5:26 PM

ptg36503484

110 Chapter 9 Modular i t y

over the wings and the wind. Maybe we could do this in a temperature and pressure-controlled
environment. Only with this sort of control can we expect to get to more repeatable results.

If we are going to start down this road, we don’t really need an engine or flight controls or the rest
of the airplane for that matter. Why not just make two models of the wings with the airfoils that we
would like to test and try those in our temperature- and pressure-controlled wind tunnel?

That would certainly be a more accurate experiment than just going flying, but this still requires us
to build the whole wing twice. Why not make a small model of each airfoil? Make each model as
precisely as possible, using exactly the same materials and techniques, and compare the two. If we
are going to go that far, we could do this on a smaller scale, and we’d need a simpler wind tunnel.

These small pieces of airplane are modules. They are parts that certainly add to the behavior of the
whole plane, but they are focused on a specific part of the problem. It is true that such experiments
will give you only a partially true picture. The aerodynamics of airplanes are more complex than
only the wings, but modularity means that we can measure things that we couldn’t measure with-
out it, so the part, the module, is certainly more testable than the whole.

In the real world, this is how you conduct experiments to determine how the shape of wings, and
other things, affect lift.

Modularity gives us greater control and greater precision in the things that we can measure. Let’s
move this example into the software world. Imagine that you are working on System B, which is
downstream from System A and upstream from System C (see Figure 9.1).

System
A

System
B

System
C

Figure 9.1
Coupled systems

This is typical of working on big systems in complex organizations. This presents a problem: how
do we test our work? Many, maybe even most, organizations faced with this problem jump to the
assumption that it is essential to test everything together to be sure that the system is safe to use.

There are many problems with this approach. First, if we measure only at this scale, we face the “test
the whole airplane” problem. The whole system is so complex that we lack precision, reproducibility,
control, and clear visibility of what any results that we do collect really mean.

We can’t evaluate our part of the system with any degree of precision, because the upstream and
downstream parts, System A and System C, get in our way. There are many types of tests that are
simply impossible as a result of this decision. What happens to System B if System A sends it mal-
formed messages?

That case is impossible to measure, while the real System A is in place sending well-formed mes-
sages. How should System B respond when the communications channel to System C is broken?

9780137314911_print.indb 110 06/10/21 5:26 PM

ptg36503484

111Designing for Testabi l i t y I mproves Modular i t y

Again, we can’t test that scenario while a real System C, with working comms, is in place, getting in
the way of us faking a comms error.

The results that we do collect don’t tell us much. If a test fails, is that because there is a problem
with our system, or is it one of the others? Maybe the failure means that we have the wrong ver-
sions of the upstream or downstream systems. If everything works, is that because we are ready
to release? Or is it because the cases we are trying to evaluate are so simplistic, due to this mega-
system not being testable that they aren’t really finding the bugs that are really there?

If we are measuring the whole, composite system (see Figure 9.2), then our results are vague and
confusing. The rather cartoony diagram in Figure 9.2 illustrates an important problem: we need
to be clear what it is that we are measuring, and we need to be clear of the value of our measure-
ments. If we are doing the kind of end-to-end tests in this diagram, then what is the objective of
our test? What do we hope to demonstrate? If our aim is to demonstrate that all of the pieces work
together, well, that may be useful in some contexts, but this style of testing is insufficient to tell us if
System B, the one that we are truly responsible for in this scenario, really works. These sorts of tests
make sense only as a supplement, a small supplement, to a better, more thorough, more modular
testing strategy. They certainly do not replace that more detailed testing is necessary to demon-
strate the correct working of our system, System B!

System
A

System
B

System
C

Figure 9.2
Testing coupled systems

So what would it take to achieve that more detailed testing? Well, we would need a point of mea-
surement, which is a place in our whole system where we can insert probes of some kind that will
allow us to reliably gather our measurements. I have represented these “points of measurement” in
this series of diagrams as fictional calipers. In reality, we are talking about being able to inject test
data into our system under test (SUT), invoke behaviors within it, and collect the outputs so that
we can interpret the results. I know that the calipers are a bit cheesy, but that is the mental model
I have when I think about testing a system. I am going to insert my system into a test rig of some
kind so that I can evaluate it. I need a measuring device (my test cases and test infrastructure) that
allows me to attach probes to my SUT so that I can see how it behaves.

9780137314911_print.indb 111 06/10/21 5:26 PM

ptg36503484

112 Chapter 9 Modular i t y

My calipers in Figure 9.2 are not very helpful for the reasons that we have already explored, but also
because the bigger and more complex the system, the more variable the results. We have not con-
trolled the variables enough to get a clear, repeatable result.

If you have a suite of even automated tests that you run to evaluate your software to determine if it
is ready to release and those tests don’t produce the same result every time, what do those results
really mean?

If our aim is to apply some engineering thinking, we need to take our measurements seriously. We
need to be able to depend upon them, which means that we need them to be deterministic. For
any given test or evaluation, I should expect, given the same version of the software under test, to
see the same results every time I run it, however many times I run it, and whatever else is going on
when I run it.

There is enough value in that statement that it is worth doing extra work, if necessary, to achieve
that repeatable outcome. It will have an impact on not only the tests that we write and how we
write them but also, importantly, the design of our software, and that is where the real value of this
engineering approach begins to show.

When we built our financial exchange, the system was completely deterministic to the extent that
we could record the production inputs and replay them some time later to get the system into
precisely the same state in a test environment. We did not set out with that goal. That was a side
effect of the degree of testability, and so determinism, that we achieved.

Complexity and Determinism

As the complexity of the system under test grows, the precision with which we can measure
things reduces. For example, if I have a piece of software that is performance critical, I can iso-
late it and put it into a test rig of some kind that allows me to create a series of controlled test
runs. I can do things like discard the early runs to eliminate any of the effects of runtime optimi-
zation, and I can run through enough executions to apply statistical techniques to the data that
I collect. If I take all of these things seriously enough, my measurements can be accurate and
reproducible down to certainly microseconds and sometimes even nanoseconds.

Doing the same things in a whole-system performance test, for a system of any significant size,
is practically impossible. If I measure performance for a whole system, the variables will have
exploded. What other tasks are underway at the same time on the computers running my code?
What about the network? Is that being used for anything else while my measurements are
underway?

Even if I control for these things, locking down the network and access to my performance test
environment, modern operating systems are complex things. What if the OS decides to do some
housekeeping while my test is running? That will surely skew the results, won’t it?

Determinism is more difficult to achieve as the complexity and scope of the system grow.

9780137314911_print.indb 112 06/10/21 5:26 PM

ptg36503484

113Designing for Testabi l i t y I mproves Modular i t y

The real root cause of a lack of determinism in computer systems is concurrency. This can take
various forms. The clock ticking away incrementing the system time is one form of concurrency;
the OS re-organizing your disk when it thinks it has some spare time is another. In the absence
of concurrency, though, digital systems are deterministic. For the same sequence of bytes and
instructions, we get the same result every time.

One useful driver of modularity is to isolate the concurrency so that each module is determin-
istic and reliably testable. Architect systems so that entry into a module is sequenced and its
outcomes are more predictable. Systems written this way are very nice to work on.

This may seem a fairly esoteric point, but in a system in which every behavior that its users
observe is deterministic, in the way that I have described, it would be eminently predictable
and testable with no unexpected side effects, at least to the limits of our testing.

Most systems are not built like this, but if we take an engineering-led approach to their design,
they can be.

If, instead, we could apply our calipers to measure only our component (see Figure 9.3), we could
measure with much greater accuracy and precision and with much more reliability. Stretching my
analogy to breaking point, we could measure other dimensions of the problem, too.

System
B

Figure 9.3
Testing modules

So, what would it take to measure with this increased precision and specificity? Well, we would like
our measuring points to be stable so that we get the same result from our measurement every time,
all other things being equal. We would like our evaluations to be deterministic.

We would also like to not have to re-create our measurement points from scratch each time that the
system changes.

To be clear, what I am describing here is a stable, modular interface to the part of the system that
we would like to test. We compose larger systems of smaller modules, modules with clearly defined
interfaces, for inputs and outputs. This architectural approach allows us to measure the system at
those interfaces.

9780137314911_print.indb 113 06/10/21 5:26 PM

ptg36503484

114 Chapter 9 Modular i t y

Reading this here, I hope that this seems obvious. The problem is that few real-world computer sys-
tems look like this.

If we make it a fundamental part of our job to test, with automated testing, the systems that we
create, then we are very strongly encouraged by the extra work that we are forced to do if we get
it wrong to create more modular systems. This is fractal. This is true at all levels of granularity, from
entire enterprise systems down to individual methods, functions, and classes.

It is simply not possible to test a system, in the way that this book assumes, that is not, in some way,
modular. We need those “points of measurement.” Our ability to test is supported and enhanced by
modularity, and modularity is encouraged by being guided in our designs by tests.

This does not necessarily imply a collection of tiny, independent components. This can equally work
for large complex systems. The key here is to understand the scope of measurement that makes
sense and work to make those measurements easy to achieve and stable in terms of the results that
they generate.

When I was involved in creating a financial exchange, we treated the whole enterprise system as a
single system, but we established clear, well-defined integration points for every external interac-
tion and faked those external systems. Now we had control; now we could inject new account reg-
istrations and collect data that, in real operation, would have been sent to banks or clearinghouses
and so on.

This allowed us, for some of our testing, to treat the whole system as a black box, inject data to
get the system into an appropriate state for a test, and collect its outputs to evaluate the system’s
response. We treated every point at which our system interacted with a third-party system and
every integration point as a point of measurement where we could plug in to our test infrastructure.
This was possible only because our entire enterprise system was designed with testability in mind
from day one.

Our system was also extremely modular and loosely coupled. So, as well as evaluating the system as
a whole, we could do more detailed testing for single, service-level components, too. Inevitably all
of the behavior within a service was also developed using fine-grained TDD techniques for pretty
much every line of code. We could also test tiny pieces of the behavior of the system in isolation
from everything else. As I said, modularity and testability are fractal.

Testability deeply informed the architectural choices that we made and, over time, had a profound
impact not just on the obvious measures of quality, like how many, or how few bugs we could find,
but more subtly, and perhaps more importantly, on the architectural compartmentalization of our
system.

Historically, we have, as an industry, undervalued or even missed the importance of testability and
specifically test-first development as a tool to drive good design and to give us early, clear feedback
on the quality of our designs.

9780137314911_print.indb 114 06/10/21 5:26 PM

ptg36503484

115Ser vices and Modular i t y

Services and Modularity
The idea of a service in software terms is rather slippery. There are no mainstream languages, for
example, that directly support the idea of services, yet still the idea is pretty pervasive. Software
developers will argue about what makes a good service or a bad one and architect their systems to
support the concept.

From a purely practical perspective, we can think of a service as code that delivers some “service” to
other code and hides the detail of how it delivers that “service.” This is just the idea of “information
hiding” and is extremely important if we want to manage the complexity of our systems as they
grow (see Chapter 12). Identifying “seams” in the design of our systems where the rest of the system
doesn’t need to know, and shouldn’t care about, the detail of what is happening on the other side
of those “seams” is a very good idea. This is really the essence of design.

Services, then, provide us with an organizing idea of little compartments in our systems that hide
detail. This is a useful idea. So a service can certainly, sensibly, be thought of as a module of our
system. If that is the case, what about these “seams,” these points where a service or module touches
something outside of its boundary? The thing that provides any meaning at all to the concept of a
“service” in software terms is that it represents a boundary. There is a difference between what is
known and what is exposed, on either side of these boundaries.

One of the commonest problems that I see in larger codebases is a result of ignoring this difference.
Often the code that represents these boundaries is indistinguishable from the code on either side.
We use the same kinds of method calls, and we even pass the same data structures across such
boundaries. There is no validation of inputs at these points or assembly and abstraction of outputs.
Such codebases quickly become tangled messes that are difficult to change.

There has been an advance in this respect, but it is a small step, and to some degree, we took that
step by accident. That is the move to REST APIs.

My background is, in part, in high-performance computing, so the idea of using text, XML, or HTML
as a way of encoding the information that flows between services leaves me a bit cold; it’s way
too slow! However, it does rather strongly encourage the idea of having a translation point at the
edges of your service or API. You translate the incoming message into some more tractable form for
consumption by your service, and you translate the outputs of your service into some horrible, big,
slow, text-based message for output. (Sorry, I let my biases creep in there.)

Software developers still get this wrong, though. Even in systems built along these lines, I still see
code that passes the HTML straight through, and the whole service interacts with that HTML—yuck!

The seams or boundaries should be treated with more care. They should be translation and valida-
tion points for information. The entry point to a service should be a little defensive barrier that limits
the worst abuses of consumers of that service. What I am describing here is a Ports & Adapters kind
of model at the level of an individual service. This approach should be just as true for a service that
communicates via standard method or function calls as one that uses HTML, XML, or any other form
of messaging.

9780137314911_print.indb 115 06/10/21 5:26 PM

ptg36503484

116 Chapter 9 Modular i t y

The base idea here is one of modularity! A system is not modular if the internal workings of adja-
cent modules are exposed. Communication between modules (and services) should be a little more
guarded than communication within them.

Deployability and Modularity
In my book Continuous Delivery, Jez Humble and I described a way to organize our work so that
our software was always releasable. We advised (and continue to advise) that you work so that your
software is always in a releasable state. Part of achieving this repeatable, reliable ability to release
software is ensuring that it is easily and simply deployable.

Since writing the Continuous Delivery book, I now believe, even more profoundly, that working so
that our software is both testable and deployable has a deep impact on the quality of our work.

One of the core ideas in my earlier book is the idea of the deployment pipeline, a mechanism that
takes commits in at one end and produces a “releasable outcome” at the other. This is a key idea. A
deployment pipeline is not simply a little workflow of build or test steps; it is a mechanized route
from commit to production.

This interpretation has some implications. This means that everything that constitutes “releasabil-
ity” is within the scope of your deployment pipeline. If the pipeline says everything is good, there
should be no more work to do to make you comfortable to release—nothing…no more integration
checks, sign-offs, or staging tests. If the pipeline says it is “good,” then it is “good to go!”

This, in turn, has some implications for the sensible scope of a deployment pipeline. If its output is
“releasable,” it must also be “independently deployable.” The scope of an effective deployment pipe-
line is always an “independently deployable unit of software.”

Now this has an impact on modularity. If the output of the deployment pipeline is deployable, it
means that the pipeline constitutes a definitive evaluation of our software. It’s definitive at least to
the degree that we care, and consider safe and sensible, to establish its readiness for release.

There are only two strategies that make sense if we are to take that idea to its logical conclusion. We
can build, test, and deploy everything that constitutes our system together, or we can build, test,
and deploy parts of that system separately. There is no halfway solution. If we don’t trust the output
of our deployment pipeline sufficiently and feel it necessary to test the results it generates with the
output of other deployment pipelines, then that presents problems; the messages that our deploy-
ment pipeline is sending to us are now unclear, and since we are trying to be engineers, that isn’t
good enough!

Now the scope of our evaluation is compromised. When are we done? Are we finished when our
pipeline completes or when every other pipeline that is needed to verify the output for our pipeline

9780137314911_print.indb 116 06/10/21 5:26 PM

ptg36503484

117Deployabi l i t y and Modular i t y

has been run? If the latter, then the “cycle time”2 for our changes includes the cycle times of every-
one else’s changes too, so we have a monolithic evaluation system.

The most scalable approach to software development is to distribute it. Reduce the coupling and
dependencies between teams and their products to the degree that each team can, independently,
create, test, and deploy their work with no reference to another team. This is the approach that has
allowed Amazon, with its famous “two-pizza teams,”3 to grow at an unprecedented rate.

Technically, one way to accomplish this independence is to take the modularity of the system so
seriously that each module is, in terms of build, test, and deployment, independent from every
other module. This is what microservices are. They are so modular that we don’t need to test them
with other services prior to release. If you are testing your microservices together, they aren’t really
microservices. Part of the definition of a microservice is that they are “independently deployable.”

Deployability can up the stakes on modularity. As we have seen, deployability defines the effective
scope of a deployment pipeline. Our choices of what really works, if we value high-quality work
based on fast, efficient feedback, are really quite limited.

We can make the choice to build, test, and deploy everything that constitutes our system together
and eliminate dependency-management problems altogether (everything lives in a single reposi-
tory), but then we must take on the responsibility to create fast enough feedback to allow devel-
opers to do a good job, which may take a big investment in engineering to get the feedback that
drives any high-quality process quickly enough.

Alternatively, we can work so that each module is, essentially, independent of every other module. We
can build, test, and deploy each of these things separately, without the need to test them together.

This means that the scope of our builds, tests, and deployment is small. Each of them is simpler,
so it is easier to achieve fast, high-quality results.

However, this comes at the sometimes very significant cost of a more complex, more distributed
architecture in our systems. We are forced, now, to take modularity very seriously indeed.

We must design for it; we must be skilled at the techniques of protocol design so that the interac-
tions between modules, the protocol of information exchange between them, is stable and is not
allowed to change in a way that forces change on other modules. We probably need to consider
and apply ideas like runtime version management for APIs and so on.

Nearly everyone would like some ideal middle ground between these two extremes, but in reality, it
doesn’t exist. The middle ground is a fudge and is often slower and more complex than the mono-
lithic approach that everyone strives, so assiduously, to avoid. The more organizationally distributed
approach that is microservices is the best way that we know to scale up software development, but
it is not a simple approach and comes at a cost.

2. Cycle time is a measure of the efficiency of your development process. How long does it take to go “from idea
to useful software in the hands of users”? In continuous delivery, we use the optimization of cycle time as a
tool to direct us toward more efficient approaches to development.

3. Amazon famously reorganized following a memo from CEO Jeff Bezos. In his memo Bezos stated that “…no
team should be bigger than can be fed by two pizzas.”

9780137314911_print.indb 117 06/10/21 5:26 PM

ptg36503484

118 Chapter 9 Modular i t y

Modularity at Different Scales
Modularity is important at every scale. Deployability is a useful tool when thinking of system-level
modules, but this, alone, is not enough to create high-quality code. There is a modern pre-occupation
with services.

This is a useful architectural tool and one that has been at the heart of my approach to system
design for at least the last three decades. However, if the modularity of your design stops there, you
may still have poor, hard-to-work-with systems.

If, as I argue, the importance of modularity is a tool to help us manage complexity, then we need to
take that to the point of readable code. Each class, method, or function should be simple and read-
able and, where appropriate, composed of smaller, independently understandable submodules.

Again, TDD helps to encourage such fine-grained code. For the code to be testable at this resolu-
tion, techniques like dependency injection encourage code with a bigger surface area. This heavily
influences the modularity of our designs.

At smaller scales, dependency injection is the most effective tool to provide pressure on our code
that encourages us to create systems composed of many small pieces. The dependencies are the
calipers, the points of measurement, that we can inject into our system to achieve a more thor-
oughly testable outcome. Again, ensuring that our code is testable encourages designs that are
genuinely modular and as a result code that is easier to read.

Some people criticize this style of design. This criticism generally takes the form that it is harder to
understand code that has a bigger surface area in this way. It is harder to follow the flow of control
through the system. This criticism misses the point. The problem here is that if it is necessary to
expose that surface area in order to test that code, then that is the surface area of the code. How
much harder is it to understand if it is obscured by poor interface design and a lack of tests? The
root of this criticism is really about what constitutes “good design.” I propose that focusing our
design on the management of complexity is a valuable benchmark to define what we mean by
“high quality” in code.

Testing, when done well, exposes something important and true about the nature of our code, the
nature of our designs, and the nature of the problem that we are solving that is not otherwise eas-
ily accessible. As a result, it is one of the most important tools in our arsenal to create better, more
modular systems and code.

Modularity in Human Systems
I discuss the impact of this engineering thinking in detail in Chapter 15, but it’s useful to call out the
particular importance of modularity in this respect. Much of my professional career has been spent
working on large computer systems. In this kind of world, the constant refrain has been “how do we

9780137314911_print.indb 118 06/10/21 5:26 PM

ptg36503484

119Modular i t y in Human Systems

scale?” Sometimes, rarely, that is about the software, but mostly when people in big organizations
ask that question, what they really mean is “how can we add more people so that we can produce
software faster?”

The real answer is that for any given computer system there are very serious limits to that. As Fred
Brooks famously said:

You can’t make a baby in a month with 9 women.4

However, there are other options; you can make nine babies in nine months with nine women,
which averages out at a baby per month. At this point my, or Fred’s, analogy breaks down!

In software terms, if not with babies, the problem is about coupling. As long as the pieces are truly
independent of one another, truly decoupled, then we can parallelize all we want. As soon as there
is coupling, there are constraints on the degree to which we can parallelize. The cost of integration
is the killer!

How do we integrate the work from separate streams of development? If you are as nerdy as I am,
this may be ringing bells; this is about something deeply fundamental. This is about information
and concurrency. When you have independent streams of information, the cost of bringing them
together to form a coherent whole can be extremely high if there is any overlap. The best way to
parallelize things is to do it in a way where there is no need to re-integrate (nine babies). Essentially,
this is the microservice approach. Microservices are an organizational scalability play; they don’t
really have any other advantage, but let’s be clear, this is a big advantage if scalability is your
problem!

We know that just adding more people to a team does not make that team go faster. In a lovely
metadata study of more than 4,000 software projects that compared the relative performance (time
to create 100,000 lines of code) in teams of 5 or fewer and teams of 20 or more, the teams of 5 took
only one week longer than the teams of 20 people over a 9-month period. So small teams are nearly
4 times as productive, per person, as larger teams.5

If we need small teams to efficiently create good, high-quality work, then we need to find ways to
seriously limit the coupling between those small teams. This is at least as much an organizational
strategy problem as it is a technical one. We need modular organizations as well as modular
software.

So if we want our organizations to be able to scale up, the secret is to build teams and systems that
need to coordinate to the minimum possible degree, we need to decouple them. Working hard to
maintain this organizational modularity is important and one of the real hallmarks of genuinely
high-performing, scalable organizations.

4. A quote from Fred Brooks’ influential, and still true, book from the 1970s, The Mythical Man Month

5. In a study Quantitative Software Management (QSM) also found that the larger teams produced 5x more
defects in their code. See https://bit.ly/3lI93oe.

9780137314911_print.indb 119 06/10/21 5:26 PM

https://bit.ly/3lI93oe

ptg36503484

120 Chapter 9 Modular i t y

Summary
Modularity is a cornerstone of our ability to make progress when we don’t have an omniscient view
of how our software should work in the future. In the absence of modularity, we can certainly create
naive software that will solve a problem in front of us now. Without working in ways that provide
some layers of insulation between the parts of software, though, our ability to continue to add new
ideas and to grow our software will rapidly diminish to the point where, in some real-world cases,
there is no forward progress at all. This is the first in our collection of tools needed to defend against
complexity.

Modularity as a design idea is fractal. It is more than only the “modules,” whatever their form,
supported in our programming languages. It is more complex and more useful than that. It is, at its
heart, the idea that we must retain our ability to change code and systems in one place, without
worrying about the impact of those changes elsewhere.

This starts us thinking about other aspects of this problem, so modularity is intimately connected
to the other ideas that we need to consider in managing the complexity of our systems—ideas like
abstraction, separation of concerns, coupling, and cohesion.

9780137314911_print.indb 120 06/10/21 5:26 PM

ptg36503484

121

Cohesion
Cohesion (in computer science) is defined as “the degree to which the elements inside a module
belong together.”1

Modularity and Cohesion: Fundamentals of Design
My favorite way to describe good software design is based on this Kent Beck quote:

Pull the things that are unrelated further apart, and put the things that are related closer together.

This simple, slightly jokey phrase has some real truth in it. Good design in software is really about
the way in which we organize the code in the systems that we create. All my recommended
principles to help us manage complexity are really about compartmentalizing our systems. We need
to be able to build our systems out of smaller, more easily understandable, more easily testable,
discrete pieces. To achieve this, we certainly need techniques that will allow us to “Pull the unrelated
things further apart,” but we also need to take seriously the need to “put the related things closer
together.” That is where cohesion comes in.

Cohesion is one of the more slippery concepts here. I can do something naive, like support the idea
of modules in my programming language and claim, as a result, that my code is modular. This is
wrong; simply throwing a collection of unrelated stuff into a file does not make the code modular in
any but the most trivial sense.

1. Source: Wikipedia https://en.wikipedia.org/wiki/Cohesion_(computer_science)

10

9780137314911_print.indb 121 06/10/21 5:26 PM

https://en.wikipedia.org/wiki/Cohesion_(computer_science)

ptg36503484

122 Chapter 10 Cohesion

When I speak of modularity, I really mean components of the system that genuinely hide informa-
tion from other components (modules). If the code within the module is not cohesive, then this
doesn’t work.

The trouble is that this is open to overly simplistic interpretations. This is probably the point at
which the art, skill, and experience of the practitioner really come into play. This balance point
between genuinely modular systems and cohesion often seems to confuse people.

A Basic Reduction in Cohesion
How often have you seen a piece of code that will retrieve some data, parse it, and then store it
somewhere else? Surely the “store” step is related to the “change” step? Isn’t that good cohesion?
They are all the steps that we need together, aren’t they?

Well, not really—let’s look at an example. First my caveats: it is going to be hard to tease apart sev-
eral ideas here. This code is inevitably going to demonstrate a bit of each of the ideas in this section,
so I rely on you to focus on where it touches on cohesion and smile knowingly when I also touch on
separation of concerns, modularity, and so on.

Listing 10.1 shows rather unpleasant code as a demonstration. However, it serves my purpose to
give us something concrete to explore. This code reads a small file containing a list of words, sorts
them alphabetically, and then writes a new file with the resulting sorted list—load, process, and
store!

This is a fairly common pattern for lots of different problems: read some data, process it, and then
store the results somewhere else.

Listing 10.1 Really Bad Code, Naively Cohesive

public class ReallyBadCohesion
{
 public boolean loadProcessAndStore() throws IOException
 {
 String[] words;
 List<String> sorted;

 try (FileReader reader =
 new FileReader("./resources/words.txt"))
 {
 char[] chars = new char[1024];
 reader.read(chars);
 words = new String(chars).split(" |\0");

 }

9780137314911_print.indb 122 06/10/21 5:26 PM

ptg36503484

123A Basic Reduc t ion in Cohesion

 sorted = Arrays.asList(words);
 sorted.sort(null);

 try (FileWriter writer =
 new FileWriter("./resources/test/sorted.txt"))
 {
 for (String word : sorted)
 {
 writer.write(word);
 writer.write("\n");
 }
 return true;
 }
 }
}

I find this code extremely unpleasant, and I had to force myself to write it like this. This code is
screaming “poor separation of concerns,” “poor modularity,” “tight coupling,” and almost “zero
abstraction,” but what about cohesion?

Here we have everything that it does in a single function. I see lots of production code that looks
like this, only usually much longer and much more complex, so even worse!

A naive view of cohesion is that everything is together and so easy to see. So ignoring the other
techniques of managing complexity for a moment, is this easier to understand? How long would it
take you to understand what this code does? How long if I hadn’t helped with a descriptive method
name?

Now look at Listing 10.2, which is a slight improvement.

Listing 10.2 Bad Code, Mildly Better Cohesion

public class BadCohesion
{
 public boolean loadProcessAndStore() throws IOException
 {
 String[] words = readWords();
 List<String> sorted = sortWords(words);
 return storeWords(sorted);
 }

 private String[] readWords() throws IOException
 {
 try (FileReader reader =
 new FileReader("./resources/words.txt"))

9780137314911_print.indb 123 06/10/21 5:26 PM

ptg36503484

124 Chapter 10 Cohesion

 {
 char[] chars = new char[1024];
 reader.read(chars);
 return new String(chars).split(" |\0");
 }
 }

 private List<String> sortWords(String[] words)
 {
 List<String> sorted = Arrays.asList(words);
 sorted.sort(null);
 return sorted;
 }

 private boolean storeWords(List<String> sorted) throws IOException
 {
 try (FileWriter writer =
 new FileWriter("./resources/test/sorted.txt"))
 {
 for (String word : sorted)
 {
 writer.write(word);
 writer.write("\n");
 }
 return true;
 }
 }
}

Listing 10.2 is still not good, but it is more cohesive; the parts of the code that are closely related
are more clearly delineated and literally closer together. Simplistically, everything that you need to
know about readWords is named and contained in a single method. The overall flow of the method
loadProcessAndStore is plain to see now, even if I had chosen a less descriptive name. The infor-
mation in this version is more cohesive than the information in Listing 10.1. It is now significantly
clearer which parts of the code are more closely related to one another, even though the code is
functionally identical. All of this makes this version significantly easier to read and, as a result, makes
it much easier to modify.

Note that there are more lines of code in Listing 10.2. This example is written in Java, which is a
rather verbose language, and the boilerplate costs are quite high, but even without that there is a
small overhead to improving the readability. This is not necessarily a bad thing!

9780137314911_print.indb 124 06/10/21 5:26 PM

ptg36503484

125Contex t Matters

There is a common desire among programmers to reduce the amount of typing that they do. Clear
concision is valuable. If we can express ideas simply, then that is of significant value, but you don’t
measure simplicity in terms of the fewest characters typed. ICanWriteASentenceOmittingSpaces is
shorter, but it is also much less pleasant to read!

It is a mistake to optimize code to reduce typing. We are optimizing for the wrong things. Code is a
communication tool; we should use it to communicate. Sure, it needs to be machine-readable and
executable too, but that is not really its primary goal. If it was, then we would still be programming
systems by flipping switches on the front of our computers or writing machine code.

The primary goal of code is to communicate ideas to humans. We write code to express ideas as
clearly and simply as we can—at least that is how it should work. We should never choose brevity at
the cost of obscurity. Making our code readable is, to my mind, both a professional duty of care and
one of the most important guiding principles in managing complexity. So I prefer to optimize to
reduce thinking rather than to reduce typing.

Back to the code: this second example is clearly more readable. It is much easier to see its intent, it
is still pretty horrible, it is not modular, there is not much separation of concerns, it is inflexible with
hard-coded strings for filenames, and it is not testable other than running the whole thing and deal-
ing with the file system. But we have improved the cohesion. Each part of the code is now focused
on one part of the task. Each part has access only to what it needs to accomplish that task. We will
return to this example in later chapters to see how we can improve on it further.

Context Matters
I asked a friend, whose code I admire, if he had any recommendations to demonstrate the impor-
tance of cohesion, and he recommended the Sesame Street YouTube video,2 “One of these things is
not like another.”

So that is a bit of a joke, but it also raises a key point. Cohesion, more than the other tools to man-
age complexity, is contextual. Depending on context, “All of these things may not be like the other.”

We have to make choices, and these choices are intimately entangled with the other tools. I can’t
clearly separate cohesion from modularity or separation of concerns because those techniques help
to define what cohesion means in the context of my design.

One effective tool to drive this kind of decision-making is domain-driven design.3 Allowing our
thinking, and our designs, to be guided by the problem domain helps us to identify paths that are
more likely to be profitable in the long run.

2. A Sesame Street song called “One of these things is not like the other”: https://youtu.be/rsRjQDrDnY8

3. Domain Driven Design is the title of a book written by Eric Evans and an approach to the design of software
systems. See https://amzn.to/3cQpNaL.

9780137314911_print.indb 125 06/10/21 5:26 PM

https://youtu.be/rsRjQDrDnY8
https://amzn.to/3cQpNaL

ptg36503484

126 Chapter 10 Cohesion

Domain-Driven Design

Domain-driven design is an approach to design where we aim to capture the core behaviors of
our code in essence as simulations of the problem domain. The design of our system aims to
accurately model the problem.

This approach includes a number of important, valuable ideas.

It allows us to reduce the chance of misunderstanding. We aim to create a “ubiquitous lan-
guage” to express ideas in the problem domain. This is an agreed, accurate way of describing
ideas in the problem domain, using words consistently, and with agreed meanings. We then
apply this language to the way that we talk about the design of our systems too.

So if I am talking about my software and I say that this “Limit-order matched,” then that makes
sense in terms of the code, where the concepts of “limit orders” and “matching” are clearly rep-
resented, and named LimitOrder and Match. These are precisely the same words that we use
when describing the scenario in business terms with nontechnical people.

This ubiquitous language is effectively developed and refined through capturing requirements
and the kind of high-level test cases that can act as “executable specifications for the behavior
of the system” that can drive the development process.

DDD also introduced the concept of the “bounded context.” This is a part of a system that
shares common concepts. For example, an order-management system probably has a different
concept of “order” from a billing system, so these are two, distinct bounded contexts.

This is an extremely useful concept for helping to identify sensible modules or subsystems
when designing our systems. The big advantage of using bounded contexts in this way is that
they are naturally more loosely coupled in the real problem domain, so they are likely to guide
us to create more loosely coupled systems.

We can use ideas like ubiquitous language and bounded context to guide the design of our
systems. If we follow their lead, we tend to build better systems, and they help us to more
clearly see the core, essential complexity of our system and differentiate that from the acciden-
tal complexity that often, otherwise, can obscure what our code is really attempting to do.

If we design our system so that it is a simulation of the problem domain, as far as we
understand it, then an idea that is viewed as a small change from the perspective of the
problem domain will also be a small step in the code. This is a nice property to have.

Domain-driven design is a powerful tool in creating better designs and provides a suite of
organizing principles that can help guide our design efforts and encourages us to improve
the modularity, cohesion, and separation of concerns in our code. At the same time, it leads us
toward a coarse-grained organization of our code that is naturally more loosely coupled.

9780137314911_print.indb 126 06/10/21 5:26 PM

ptg36503484

127Contex t Matters

Another important tool that helps us create better systems is separation of concerns, which we will
talk about in considerably more detail in the next chapter, but for now it is perhaps the closest
thing that I have to a rule to guide my own programming. “One class, one thing; one method/
function, one thing.”

I strongly dislike both of the code examples presented in this chapter so far and feel slightly embar-
rassed to show them to you, because my design instincts are screaming at me that the separation of
concerns is so terrible in both cases. Listing 10.2 is better; at least each method now does one thing,
but the class is still terrible. If you don’t already see it, we will look at why that matters in the next
chapter.

Finally, in my box of tools, there is testability. I started writing these bad code examples as I always
start when writing code: by writing a test. I had to stop almost immediately, though, because there
was no way that I could practice TDD and write code this bad! I had to dump the test and start
again, and I confess that I felt like I had stepped back in time. I did write tests for my examples to
check to see if they did what I expected, but this code is not properly testable.

Testability strongly encourages modularity, separation of concerns, and the other attributes that we
value in high-quality code. That, in turn, helps us make an initial approximation of the contexts and
abstractions that we like the look of in our design and where to make our code more cohesive.

Note, there are no guarantees here, and that is the ultimate point of this book. There are no simple,
cookie-cutter answers. This book provides mental tools that help us structure our thinking when we
don’t have the answers.

The techniques in this book are not meant to deliver the answers to you; that is still up to you. They
are rather to provide you with a collection of ideas and techniques that will allow you to safely make
progress even when you don’t yet know the answer. When you are creating a system of any real
complexity, that is always the case; we never know the answers until we are finished!

You can think of this as a fairly defensive approach, and it is, but the aim is to keep our freedom of
choice open. That is one of the significant benefits of working to manage complexity. As we learn
more, we can change our code on an ongoing basis to reflect that learning. I think a better adjective
than “defensive” is “incremental.”

We make progress incrementally through a series of experiments, and we use the techniques of
managing complexity to protect ourselves from making mistakes that are too damaging.

This is how science and engineering work. We control the variables, take a small step, and evaluate
where we are. If our evaluation suggests that we took a misstep, then we take a step back and
decide what to try next. If it looks okay, we control the variables, take another small step, and so on.

Another way to think of this is that software development is a kind of evolutionary process. Our
job as programmers is to guide our learning and our designs through an incremental process of
directed evolution toward desirable outcomes.

9780137314911_print.indb 127 06/10/21 5:26 PM

ptg36503484

128 Chapter 10 Cohesion

High-Performance Software
One of the common excuses for unpleasant code, like that shown in Listing 10.1, is that you have to
write more complex code if you want high performance. I spent the latter part of my career working
on systems at the cutting edge of high performance, and I can assure you that this is not the case.
High-performance systems demand simple, well-designed code.

Think for a moment what high performance means in software terms. To achieve “high performance,”
we need to do the maximum amount of work for the smallest number of instructions.

The more complex our code, the more likely that the paths through our code are not optimal,
because the “simplest possible route” through our code is obscured by the complexity of the code
itself. This is a surprising idea to many programmers, but the route to fast code is to write simple,
easy-to-understand code.

This is even more true as you start taking a broader system view.

Let’s revisit our trivial example again. I have heard programmers make the argument that the code
in Listing 10.1 is going to be faster than the code in Listing 10.2 because of the “overhead” of the
method calls that Listing 10.2 adds. I am afraid that for most modern languages this is nonsense.
Most modern compilers will look at the code in Listing 10.2 and inline the methods. Most modern
optimizing compilers will do more than that. Modern compilers do a fantastic job of optimizing
code to run efficiently on modern hardware. They excel when the code is simple and predictable,
so the more complex your code is, the less help you will gain from your compiler’s optimizer. Most
optimizers in compilers simply give up trying once the cyclomatic complexity4 of a block of code
exceeds some threshold.

I ran a series of benchmarks against both versions of this code. They were not very good, because
this code is bad. We are not sufficiently controlling the variables to really see clearly what is happen-
ing, but what was obvious was that there was no real measurable difference at this level of test.

The differences were too tiny to be distinguished from everything else that is going on here. On one
run, the BadCohesion version was best; on another the ReallyBadCohesion was best. On a series of
benchmark runs, for each of 50,000 iterations of the loadProcessStore method, the difference was
no more than 300 milliseconds overall, so on average, that is roughly a difference of 6 nanoseconds
per call and was actually slightly more often in favor of the version with the additional method calls.

This is a poor test, because the thing that we are interested in, the cost of the method calls, is
dwarfed by the cost of the I/O. Testability—in this case performance testability—once again can
help guide us toward a better outcome. We will discuss this in more detail in the next chapter.

There is so much going on “under the hood” that it is hard, even for experts, to predict the outcome.
What is the answer? If you are really interested in the performance of your code, don’t guess about
what will be fast and what will be slow; measure it!

4. A software metric used to indicate the complexity of a program.

9780137314911_print.indb 128 06/10/21 5:26 PM

ptg36503484

129Driv ing H igh Cohesion with TDD

Link to Coupling
If we want to retain our freedom to explore and to sometimes make mistakes, we need to worry
about the costs of coupling.

Coupling: Given two lines of code, A and B, they are coupled when B must change behavior
only because A changed.

Cohesion: They are cohesive when a change to A allows B to change so that both add new
value.5

Coupling is really too generic a term. There are different kinds of coupling that need to be consid-
ered (an idea that we will explore in more detail in Chapter 13).

It is ridiculous to imagine a system that has no coupling. If we want two pieces of our system to
communicate, they must be coupled to some degree. So like cohesion, coupling is a matter of
degree rather than any kind of absolute measure. The cost, though, of inappropriate levels of cou-
pling is extremely high, so it is important to take its influence into account in our designs.

Coupling is in some ways the cost of cohesion. In the areas of your system that are cohesive, they
are likely to also be more tightly coupled.

Driving High Cohesion with TDD
Yet again using automated tests, and specifically TDD, to drive our design gives us a lot of benefits.
Striving to achieve a testable design and nicely abstracted, behaviorally focused tests for our system
will apply a pressure on our design to make our code cohesive.

We create a test case before we write the code that describes the behavior that we aim to observe
in the system. This allows us to focus on the design of the external API/Interface to our code,
whatever that might be. Now we work to write an implementation that will fulfill the small, execut-
able specification that we have created. If we write too much code, more than is needed to meet
the specification, we are cheating our development process and reducing the cohesion of the
implementation. If we write too little, then the behavioral intent won’t be met. The discipline of TDD
encourages us to hit the sweet spot for cohesion.

As ever, there are no guarantees. This is not a mechanical process, and it still relies upon the
experience and skill of the programmer, but the approach applies a pressure toward a better out-
come that wasn’t there before and amplifies those skills and that experience.

5. Coupling and cohesion are described on the famous C2 wiki, https://wiki.c2.com/?CouplingAndCohesion.

9780137314911_print.indb 129 06/10/21 5:26 PM

https://wiki.c2.com/?CouplingAndCohesion

ptg36503484

130 Chapter 10 Cohesion

How to Achieve Cohesive Software
The key measure of cohesion is the extent, or cost, of change. If you have to wander around
your codebase changing it in many places to make a change, that is not a very cohesive system.
Cohesion is a measure of functional relatedness. It is a measurement of relatedness of purpose. This
is slippery stuff!

Let’s look at a simple example.

If I create a class with two methods, each associated with a member variable (see Listing 10.3), this
is poor cohesion, because the variables are really unrelated. They are specific to different methods
but stored together at the level of the class even though they are unrelated.

Listing 10.3 More Poor Cohesion

class PoorCohesion:
 def __init__(self):
 self.a = 0
 self.b = 0

 def process_a(x):
 a = a + x

 def process_b(x):
 b = b * x

Listing 10.4 shows a much nicer, more cohesive solution to this. Note that as well as being more
cohesive, this version is also more modular and has a better separation of concerns. We can’t duck
the relatedness of these ideas.

Listing 10.4 Better Cohesion

class BetterCohesionA:
 def __init__(self):
 self.a = 0

 def process_a(x):
 a = a + x

class BetterCohesionB:
 def __init__(self):
 self.b = 0
 def process_b(x):
 b = b * x

9780137314911_print.indb 130 06/10/21 5:26 PM

ptg36503484

131How to Achieve Cohesive Sof t ware

In combination with the rest of our principles for managing complexity, our desire to achieve a
testable design helps us to improve the cohesiveness of our solutions. A good example of this is the
impact of taking separation of concerns seriously, particularly when thinking about separating acci-
dental complexity6 from essential complexity.7

Listing 10.5 shows three simple examples of improving the cohesiveness of our code by consciously
focusing on separating “essential” and “accidental” complexity. In each example, we are adding an
item to a shopping cart, storing it in a database, and calculating the value of the cart.

Listing 10.5 Three Cohesion Examples

def add_to_cart1(self, item):
 self.cart.add(item)

 conn = sqlite3.connect(‘my_db.sqlite')
 cur = conn.cursor()
 cur.execute('INSERT INTO cart (name, price)
 values (item.name, item.price)’)
 conn.commit()
 conn.close()

 return self.calculate_cart_total();

def add_to_cart2(self, item):
 self.cart.add(item)
 self.store.store_item(item)
 return self.calculate_cart_total();

def add_to_cart3(self, item, listener):
 self.cart.add(item)
 listener.on_item_added(self, item)

The first function is clearly not cohesive code. There are lots of concepts and variables jumbled
together here and a complete mix of essential and accidental complexity. I would say that this is
very poor code, even at this essentially trivial scale. I would avoid writing code like this because it
makes thinking about what is going on harder, even at this extremely simple scale.

6. The accidental complexity of a system is the complexity imposed on the system because we are running on
a computer. It is the stuff that is a side effect of solving the real problem that we are interested in, e.g., the
problems of persisting information, of dealing with concurrency or complex APIs, etc.

7. The essential complexity of a system is the complexity that is inherent to solving the problem, e.g., the
calculation of an interest rate or the addition of an item to a shopping cart.

9780137314911_print.indb 131 06/10/21 5:26 PM

ptg36503484

132 Chapter 10 Cohesion

The second example is a little better. This is more coherent. The concepts in this function are related
and represent a more consistent level of abstraction in that they are mostly related to the essential
complexity of the problem. The “store” instruction is probably debatable, but at least we have hid-
den the details of the accidental complexity at this point.

The last one is interesting. I would argue that it is certainly cohesive. To get useful work done, we
need to both add the item to the cart and inform other, potentially interested parties that the addi-
tion has been made. We have entirely separated the concerns of storage and the need to calculate
a total for the cart. These things may happen, in response to being notified of the addition, or they
may not if those parts of the code didn’t register interest in this “item added” event.

This code either is more cohesive, where the essential complexity of the problem is all here and
the other behaviors are side effects, or is less cohesive if you consider “store” and “total” to be parts
of this problem. Ultimately, this is contextual and a design choice based on the context of the
problems that you are solving.

Costs of Poor Cohesion
Cohesion is perhaps the least directly quantifiable aspect of my “tools for managing complexity,” but
it is important. The problem is that when cohesion is poor, our code and our systems are less
flexible, more difficult to test, and more difficult to work on.

In the simple example in Listing 10.5, the impact of cohesive code is clear. If the code confuses
different responsibilities, it lacks clarity and readability as add_to_cart1 demonstrates. If respon-
sibilities are more widely spread, it may be more difficult to see what is happening, as in add_to_
cart3. By keeping related ideas close together, we maximize the readability as in add_to_cart2.

In reality, there are some advantages to the style of design hinted at in add_to_cart3, and this code
is certainly a nicer place to work than version 1.

My point here, though, is that there is sweet spot for cohesion. If you jumble too many concepts
together, you lose cohesion at a fairly detailed level. In example 1, you could argue that all the work
is done inside a single method, but this is only naively cohesive.

In reality, the concepts associated with adding an item to a shopping cart, the business of the
function, are mixed in with other duties that obscure the picture. Even in this simple example, it
is less clear what this code is doing until we dig in. We have to know a lot more stuff to properly
understand this code.

The other alternative, add_to_cart3, while more flexible as a design, still lacks clarity. At this
extreme it is easy for responsibilities to be so diffuse, so widely dispersed, that it is impossible to
understand the picture without reading and understanding a lot of code. This could be a good
thing, but my point is that there is a cost in clarity to coupling this loose, as well as some benefits.

Both of these failings are extremely common in production systems. In fact, they’re so common that
they may even be the norm for large complex systems.

9780137314911_print.indb 132 06/10/21 5:26 PM

ptg36503484

133Summar y

This is a failure of design and comes at a significant cost. This is a cost that you will be familiar with if
you have ever worked on “legacy code.”8

There is a simple, subjective way to spot poor cohesion. If you have ever read a piece of code and
thought “I don’t know what this code does,” it is probably because the cohesion is poor.

Cohesion in Human Systems
As with many of the other ideas in this book, problems with cohesion aren’t limited only to the code
that we write and to the systems that we build. Cohesion is an idea that works at the level of infor-
mation, so it is just as important in getting the organizations in which we work structured sensibly.
The most obvious example of this is in team organization. The findings from the “State of DevOps”
report say that one of the leading predictors of high performance, measured in terms of throughput
and stability, is the ability of teams to make their own decisions without the need to ask permission
of anyone outside the team. Another way to think of that is that the information and skills of the
team are cohesive, in that the team has all that it needs within its bounds to make decisions and to
make progress.

Summary
Cohesion is probably the slipperiest of the ideas in the list of ideas for managing complexity.
Software developers can, and do, sometimes argue that simply having all the code in one place, one
file, and one function even, is at least cohesive, but this is too simplistic.

Code that randomly combines ideas in this way is not cohesive; it is just unstructured. It’s bad. It
prevents us from seeing clearly what the code does and how to change it safely.

Cohesion is about putting related concepts, concepts that change together, together in the code.
If they are only “together” by accident because everything is “together,” we have not really gained
much traction.

Cohesion is the counter to modularity and primarily makes sense when considered in combination
with modularity. One of the most effective tools to help us strike a good working balance between
cohesion and modularity is separation of concerns.

8. Legacy code or legacy systems are systems that have been around for a while. They probably still deliver impor-
tant value to the organizations that operate them, but they have often devolved into poorly designed tangled
messes of code. Michael Feathers defines legacy system as a “system without tests.”

M10_Farley_C10_p121-134.indd 133 07/10/21 1:36 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

135

Separation of Concerns
Separation of concerns is defined as “a design principle for separating a computer program into
distinct sections such that each section addresses a separate concern.”1

Separation of concerns is the most powerful principle of design in my own work. I apply it
everywhere.

The simple colloquial description of separation of concerns is “One class, one thing. One method,
one thing.” It’s a nice soundbite, but that doesn’t give the functional programmers a free pass to
ignore it.

This is about clarity and focus in our code and systems. It is one of the key enabling techniques to
help us improve the modularity, cohesion, and abstraction in the systems that we create and, as a
result, help us reduce the coupling to an effective minimum.

Separation of concerns also operates at all levels of granularity. It is a useful principle at the scale of
whole systems as well as at the level of individual functions of a system.

Separation of concerns is not really the same kind of idea as cohesion and modularity. These two are
properties of code, and while we can speak of code as having a “good separation of concerns,” what
we are really saying is that the “stuff that is unrelated is far apart, and the stuff that is related is close
together.” Separation of concerns is really a specific take on modularity and cohesion.

Separation of concerns is primarily a technique that we can adopt that helps us reduce coupling
and improve the cohesion and modularity of our code and systems.

1. Source: Wikipedia, https://en.wikipedia.org/wiki/Separation_of_concerns

11

9780137314911_print.indb 135 06/10/21 5:26 PM

https://en.wikipedia.org/wiki/Separation_of_concerns

ptg36503484

136 Chapter 11 Separat ion of Concerns

That does, sort of, downplay its importance to my approach to design, though. Separation of con-
cerns is a fundamental driver of good design choices for me. It allows me to keep the code and
architecture of the systems that I create clean, focused, composable, flexible, efficient, scalable, and
open to change, as well as lots of other good things, too.

Swapping Out a Database

When we built our financial exchange, we adopted the engineering disciplines outlined in
this book. In fact, this experience is what made me want to write this book. Our exchange was
fantastic—the best large-system code base that I have ever worked on or seen.

We took a strict approach to separation of concerns from individual functions all the way to our
enterprise system architecture. We could write business logic that knew nothing at all about its
surroundings, was completely testable, didn’t make any remote calls that it was aware of, didn’t
record any data that it was aware of, didn’t know the addresses of its collaborators, and didn’t
worry about its own security, scalability, or resilience.

These services could work like this because all of these behaviors were looked after elsewhere;
they were other “concerns” of the system. The pieces of behavior that provided those services to
the core logic didn’t know anything about the business that they operated in and didn’t know
what the code for which they provided these services did.

As a result, a domain-focused service in this system was secure, persistent, highly available, scal-
able, resilient, and very high-performance by default.

One day, we decided that we didn’t like the commercial terms that we had with our relational
database vendor. We used this database to store some of the contents of our data warehouse, a
large data store that was growing rapidly and that stored historical details of order history and
other business-critical values.

We downloaded one of the open source relational database management systems (RDBMSs),
copied it to our repository for such dependencies, scripted its deployment, and made a few
simple changes to the code that interacted with the RDBMS. This was simple because of the
separation of concerns in our architecture. We then submitted the change to our continuous
delivery deployment pipeline. A couple of tests failed; we tracked down the error and fixed the
problems and then committed the new version to the pipeline. All the tests in our deployment
pipeline passed on this second attempt, so we knew that our change was safe to release. Our
changes were deployed into production the next time the system was released a few days later.

This whole story took a single morning!

Without good separation of concerns, this would have taken months or years and probably
wouldn’t even have been contemplated as a result.

9780137314911_print.indb 136 06/10/21 5:26 PM

ptg36503484

137Separat ion of Concerns

Let’s look at a simple example. In the previous chapter, I showed three examples of code solving the
same problem; Listing 11.1 shows them again.

Listing 11.1 Three Separation of Concern Examples

def add_to_cart1(self, item):
 self.cart.add(item)

 conn = sqlite3.connect(‘my_db.sqlite')
 cur = conn.cursor()
 cur.execute('INSERT INTO cart (name, price)
 values (item.name, item.price)’)
 conn.commit()
 conn.close()

 return self.calculate_cart_total();

def add_to_cart2(self, item):
 self.cart.add(item)
 self.store.store_item(item)
 return self.calculate_cart_total();

def add_to_cart3(self, item, listener):
 self.cart.add(item)
 listener.on_item_added(self, item)

In the previous chapter, we discussed these in the context of cohesion, but the principle that I used
to achieve a more cohesive result was separation of concerns.

In the first, bad example, add_to_cart1, the separation is nonexistent. This code bundles together
the core focus of the function, adding something to a cart, with the esoteric detail of how things are
stored in a relational database. It then, as a side effect, calculates some kind of total. Nasty!

The second example, add_to_cart2, is a considerable step forward. Now we are initiating the stor-
age but don’t care how that works. We could imagine that the “store” was supplied to the class and
could be anything. This code is considerably more flexible as a result. It still knows that storage and
cart-total calculation are involved, though.

The third example represents a more complete separation of concerns. In this example, the code exe-
cutes the core behavior, adding something to the cart, and then merely signals that something was
added. This code doesn’t know and doesn’t care what happens next. It is entirely decoupled from
storage and total calculation. This code is considerably more cohesive and more modular as a result.

Clearly, as with any design decision, there is choice here. I would argue that add_to_cart1 is just
bad. Separation of concerns would rule it out. The guiding principle is that this is a mix of essential
and accidental complexity. That is, how and where we store something is not germane to the core

9780137314911_print.indb 137 06/10/21 5:26 PM

ptg36503484

138 Chapter 11 Separat ion of Concerns

shopping-cart behavior that we are trying to create. We want a clear line, a separation, between
code that deals with essential and code that deals with accidental complexity.

The difference between the second two examples is more nuanced. This is more of a matter of
context and choice. My personal preference is strongly in favor of add_to_cart3. This is the most
flexible solution of all. I may or may not choose to achieve my separation with a method-injected
listener like this, but I very much like that I have removed the concept of storage from my core
domain.

This is the code that I would usually write. To my mind, version 2 of add_to_cart is still confusing
concerns. I certainly think that store_item is a better abstraction than some connection and SQL
stuff, but the concept itself is still in the realm of accidental complexity. If you put something in a
real shopping cart, you don’t then need to “persist” it!

Version 3 gives me the greatest freedom of choice, at little real penalty. A valid criticism of this
approach is that you can’t see here that storage may be going on, but that is not really what mat-
ters here, in this moment, for this piece of code. Storage is a side effect of how our computer works,
not a core behavior of adding something to a shopping cart. In the third example, we can clearly
see that when an item is added, and see that something else may be happening; we just don’t care
what. If we do care, we can go and look.

Think for a moment about the testability of each of these methods. Version 1 will be horrible to test.
We will need a database, so the test will be difficult to establish and probably extremely fragile and
slow; either the database will be shared and liable to change outside of the test, or it will be
created during the setup of the test, and each test run will be very slow to execute. Both of the
other two versions can be tested easily and efficiently with fakes.

The primary argument against version 3 is that it is less clear what is going on. I certainly agree that
clarity is a virtue in code. Actually, though, this is really just a matter of context. I am looking at the
code here that is responsible for adding an item to a cart. Why should it know what happens next?

This focus on separation of concerns has helped us improve the modularity and cohesion of this
code. Depending on the degree to which the collaboration of several parts matter—listeners that
store the results or calculate totals, for example—we can test the correct establishment of those
relationships elsewhere.

So the “whole picture” is obscured only because we are looking in the wrong place. If we were to
take that rather naive view of the world, then shouldn’t the generic collection that we are using to
represent our cart also know about storage and totals? Of course not!

One of the reasons that I value separation of concerns so highly as a guiding principle is because
it reminds me to keep my focus small. I feel proud of code that I have written when you can look
at each part and understand what that part does without thinking too hard about it. If you have to
study it for more than a handful of seconds, I have failed. Now you may have to understand how
that part is used by other parts, but those other parts will have their own concerns to deal with, and
I ideally express them as clearly.

9780137314911_print.indb 138 06/10/21 5:26 PM

ptg36503484

139Separat ing Essent ia l and Accidental Complexit y

Dependency Injection
An extremely useful tool in achieving a good separation of concerns is dependency injection.
Dependency injection is where dependencies of a piece of code are supplied to it as parameters,
rather than created by it.

In our by now slightly overused example, in add_to_cart1 the connection to the database is explicitly
created and opened within the method. This means that there is no opportunity to use an alternative.
We are tightly coupled to this specific implementation, even to this specifically named instance of the
database. If the store in version 2 is passed in as a constructor parameter, then immediately this repre-
sents a step-change in flexibility. We can supply anything that implements store_item.

In version 3 of our add_to_cart method, the listener could be anything that implements on_item_
added.

This simple change in the relationship between the behaviors of this code is significant. In the first
case, version 1, the code creates everything that it needs, so it is deeply coupled to a single, specific
implementation. This code is inflexible by design. In the others, the code is a collaborator with other
components of the system, so it knows, and cares, little about how they operate.

Dependency injection is often misunderstood as the function of a tool or framework, but this is not
the case. Dependency injection is something that you can do in most languages, certainly in any
OO or functional language, natively, and it is a powerful approach to design. I have even seen it
used, to very good effect, in Unix shell scripts.

Dependency injection is a fantastic tool to minimize coupling to an appropriate, useful level, but it
is also an effective way to form a line of demarcation between concerns. I will point out again how
interlinked all these ideas are. This is not because of repetition, but rather that we are describing
some important, deep properties of software and software development; therefore, as we approach
those problems from different directions, they inevitably intersect.

Separating Essential and Accidental Complexity
An effective route into improving the quality of our design is to aim to separate concerns in a
specific way—that is, to separate the essential complexity of our systems from the accidental. If
the concept of “essential and “accidental” complexity is new to you, these are important ideas first
described in Fred Brooks’ famous paper “There is No Silver Bullet,” mentioned earlier in this book.

The essential complexity of a system is the complexity that is inherent in solving the problem that
you are trying to solve, how to calculate the value of a bank account, how to total the items in a
shopping cart, or even how to calculate the trajectory of a spaceship, for example. Addressing this
complexity is the real value that our system offers.

The accidental complexity is everything else—the problems that we are forced to solve as a side
effect of doing something useful with computers. These are things like persistence of data, display-
ing things on a screen, clustering, some aspects of security…in fact anything that is not directly
related to solving the problem at hand.

9780137314911_print.indb 139 06/10/21 5:26 PM

ptg36503484

140 Chapter 11 Separat ion of Concerns

Just because it is “accidental” does not mean that it is unimportant; our software is running on a
computer, so dealing with the constraints and the realities of that is important, but if we built a sys-
tem that was fantastic at dealing with accidental complexity but didn’t have any essential complex-
ity, it would, by definition, be useless! So, it is in our interests to work to minimize, without ignoring,
accidental complexity.

An effective approach to improving our designs through separation of concerns is to focus very
clearly on separating the concerns of the accidental and essential complexities of our systems.

I want the logic of my system that cares about how to drive a car to be separate from the logic that
knows how to display information on a screen, the logic that knows how to evaluate a trade to be
separate from how that trade is stored or communicated.

This may or may not seem obvious, but it is important, and, subjectively, it doesn’t seem to me to
be how most code is written. Most of the code that I see people write decidedly conflates these two
different classes of responsibility. It is common to see business logic mixed with display code and
the details of persistence in the midst of the logic that deals with, or that should deal with, the core
domain (the essential complexity) of the system.

This is yet another area where focusing on the testability of our code and systems can be a big help
in improving our design.

Listing 10.1 demonstrated this clearly. This code is not really testable in any but the most naively com-
plex way. Sure, I could write a test that first created a file at a specific location on disk called words.txt
and then run the code and look for a result in another file at a specific location called sorted.txt, but this
would be slow, annoyingly complex, and so coupled to its environment that I could trivially break the
test by renaming the files or moving their location. Try running this test in parallel with itself, or some-
thing closely related, and you will quickly face some unpleasant problems!

The majority of the work going on in Listing 10.1 is not even vaguely related to the behavior of the
code that matters. This is nearly all accidental complexity in the heart of the code that should be
focused on doing something more important—in this case sorting a collection of words.

Listing 10.2 improved the cohesion but is still not testable as a unit. It shares the same problems as
Listing 10.1 in this regard.

Listing 11.2 is an example of attempting to improve this code purely from the perspective of
separating the accidental from the essential complexity. I wouldn’t really pick names like “essential”
or “accidental” for real code; they are just to make the example clearer.

Listing 11.2 Separating Accidental and Essential Complexity

public interface Accidental
{
 String[] readWords() throws IOException
 boolean storeWords(List<String> sorted) throws IOException
}

9780137314911_print.indb 140 06/10/21 5:26 PM

ptg36503484

141Separat ing Essent ia l and Accidental Complexit y

public class Essential
{
 public boolean loadProcessAndStore(Accidental accidental) throws IOException
 {
 List<String> sorted = sortWords(accidental.readWords());
 return accidental.storeWords(sorted);
 }

 private List<String> sortWords(String[] words)
 {
 List<String> sorted = Arrays.asList(words);
 sorted.sort(null);
 return sorted;
 }
}

Assuming that we implement the accidental complexity functions outlined in our “Accidental” inter-
face in Listing 11.2, this code does exactly the same things as Listings 10.1 and 10.2, but it is better.
By separating the concerns—in this case using the “seam” between the accidental complexity and
the essential complexity of the problem that we are solving—we have improved things consider-
ably. This code is easier to read, more focused on the problem that matters, and considerably more
flexible as a result. If we wanted to supply “words” from somewhere other than a file in a specific
location on a specific device, we can. If we want to store the sorted words somewhere else, we can.

This is still not great code. We could further improve its separation of concerns to improve its focus
and decouple it more in terms of readability, as well as at the technical level.

Listing 11.3 shows something a bit closer; we could certainly debate some of my naming choices,
which would be more context dependent, but purely from the perspective of separation of concerns,
I hope that you can see a very big difference between the code in Listing 10.1 and Listings 11.2
and 11.3. Even in this simple sample, we improved the readability, testability, flexibility, and utility of
this code by following these design principles.

Listing 11.3 Removing Accidental Complexity with Abstraction

public interface WordSource
{
 String[] words();
}

public interface WordsListener
{

9780137314911_print.indb 141 06/10/21 5:26 PM

ptg36503484

142 Chapter 11 Separat ion of Concerns

 void onWordsChanged(List<String> sorted);
}

public class WordSorter
{
 public void sortWords(WordSource words, WordsListener listener)
 {
 listener.onWordsChanged(sort(words.words()));
 }

 private List<String> sort(String[] words)
 {
 List<String> sorted = Arrays.asList(words);
 sorted.sort(null);
 return sorted;
 }
}

The separation of essential and accidental complexity is a good starting point to help us get to
code with a better separation of concerns. There is a lot of value in this approach, but it is the
low-hanging fruit. What about other mixed concerns?

Importance of DDD
We can also look to guide our designs from the perspective of the problem domain. If we take an
evolutionary, incremental approach to design, we can work in ways that allow us to keep a sharp
look out for those moments when we may identify new concerns—concerns that may otherwise be
inappropriately conflated in our designs.

Listing 11.4 shows some Python code. In it, I try to create a version of the children’s game Battleship,
in which we try to sink our opponent’s fleet.

I have come to the point in my design where I am beginning to question it.

Listing 11.4 Missing a Concept

class GameSheet:

 def __init__(self):
 self.sheet = {}
 self.width = MAX_COLUMNS
 self.height = MAX_ROWS
 self.ships = {}
 self._init_sheet()

9780137314911_print.indb 142 06/10/21 5:26 PM

ptg36503484

143I mpor tance of DDD

 def add_ship(self, ship):
 self._assert_can_add_ship(ship)
 ship.orientation.place_ship(self, ship)
 self._ship_added(ship)

In my GameSheet that represents the playing area, the grid of squares, of the game, I have come to
the point where I want to add a ship to the sheet.

I was using Test-Driven Development (TDD) to create this code, and at this point I had a growing
series of tests in GameSheetTest focused on the complexities of adding a ship. Out of 11 tests, 6
of them were focused on testing whether I was allowed to place a ship onto the GameSheet. I had
begun adding validation code to the GameSheet to verify my additions, and I had about 9 or 10 lines
of code in three extra functions.

I was feeling uneasy about my design of this code and of the tests that supported it. Both were
growing in size and complexity, not by much, but enough to make me start looking for what was
wrong. Then I realized that I was making a separation of concerns mistake. My problem was that my
design was missing an important concept completely.

My GameSheet was responsible for the position of the ships and the rules of the game. Having an
“and” in the description of a class or a method is a warning sign. It says that I have two concerns
rather than one. In this case, it quickly seemed obvious to me that I was missing the concept of
“rules” in my implementation. I refactored the code and the tests, extracting a new class called
Rules. Listing 11.5 shows how the addition of Rules simplifies things.

Listing 11.5 Listening to the Code

class GameSheet:

 def __init__(self, rules):
 self.sheet = {}
 self.width = MAX_COLUMNS
 self.height = MAX_ROWS
 self.rules = rules
 self._init_sheet()

 def add_ship(self, ship):
 self.rules.assert_can_add_ship(ship)
 ship.orientation.place_ship(self, ship)
 self._ship_added(ship)

This immediately simplified the GameSheet. It removed the need for the sheet to maintain a collec-
tion of Ships, and it removed nine or ten lines of validation logic that was only the beginning of the
evolution of my code focused on validating compliance with the rules.

9780137314911_print.indb 143 06/10/21 5:26 PM

ptg36503484

144 Chapter 11 Separat ion of Concerns

Ultimately, this change gave me more flexibility in my design for the future, allowing me to better
test the GameSheet logic and the Rules independently of one another and, potentially, as a side
effect, opened the door to having this code work with different versions of the Rules one day. I
didn’t worry about what those rules might be. I didn’t do any extra work to support some imaginary
future new rules, but there was now a “seam” in my code that could possibly prove useful in the
future while, in the pragmatic real world of the present, it allowed me to better test my code and
improved my design. All this was driven by a simple focus on separation of concerns.

Using the problem that you are solving to help you define sensible lines of demarcation in your
code is really the essence of separation of concerns. This is true at various levels of granularity. We
can begin with bounded contexts to identify course-grained modules (or services) in our design and
then work to refine our design over time as we learn more about the problem that we are solving
and gain more insight into the readability, or otherwise, of our code.

One of the keys here is to try to maintain a very low tolerance for complexity. Code should be sim-
ple and readable, and as soon as it begins to feel like hard work, you should pause and start looking
for ways to simplify and clarify the part in front of you.

In the example outlined in Listings 11.4 and 11.5, the thing that started me worrying about my
design was probably down to only ten lines of code and a few test cases that I later decided were
in the wrong place. This is one of the reasons that I value separation of concerns quite so highly. It
provides me with a mechanism to, very early in the process, detect problems that will, if I don’t react
to them, lead to reduced modularity and poor cohesion in my designs.

Testability
This approach to incrementally evolving the design of your code, while keeping an eye out for poor
separation of concerns, is reinforced through testing. As I have already described, dependency injec-
tion can help us improve our designs, but an even more powerful, maybe an even more fundamen-
tal, tool to help to establish an effective separation of concerns is testability.

We can use the testability of the systems that we create to drive quality into them in a way that little
else, beyond talent and experience, can do.

If we work to ensure that our code is easy to test, then we must separate the concerns or our tests
will lack focus. Our tests will also be more complex, and it will be difficult to make them repeatable
and reliable. Striving to control the variables so that we can test encourages us to create systems
that demonstrate the properties of high quality in software that we value: modularity, cohesion,
separation of concerns, information hiding, and loose coupling.

9780137314911_print.indb 144 06/10/21 5:26 PM

ptg36503484

145Por ts & Adapters

Ports & Adapters
Our aim in focusing on separating concerns is to improve the modularity and cohesion of our sys-
tems. This, in turn, makes our systems overall less tightly coupled. Managing the coupling in our
systems appropriately should be one of the primary focusses of our designs, and this is true at every
level of granularity.

One level where this is perhaps most clearly evident, and of value, is at those seams in our code
where one “concern” interacts with another. These are places in our systems where we should always
take more care.

Let’s look at a simple example (see Listing 11.6). Here we have some code that wants to store
something—in this case in an Amazon AWS S3 bucket. We have some code that processes whatever
it is that we want to store and some code that invokes the storage itself, which is a decent start for
separating the concerns of processing and storage.

For this code to work, there will have been some setup somewhere to initialize the s3client so that
it knows the necessary details of the account that owns the bucket and so on. I haven’t shown that
code here, on purpose; I am sure that you can imagine several different ways that s3client arrived
at this point. Some of these ways demonstrate better or worse separation of concerns. In this case,
let’s just focus on what we have in this function.

Listing 11.6 Storing a String in S3

void doSomething(Thing thing) {
 String processedThing = process(thing);
 s3client.putObject("myBucket," "keyForMyThing," processedThing);
}

As it stands, the code in Listing 11.6 is written from two different perspectives. We are used to see-
ing code like this all the time, but let’s think about it for a moment. Here we have two very different
focuses and two very different levels of abstraction all within two lines of code.

The first line is focused on doing something that makes sense in the world of the function or
method, perhaps “process (thing)’” makes sense in a business context; it doesn’t really matter, except
that this is, presumably, the focus, the essential part, of this code. This is the job that we want
done, and it is written from that perspective. The second line is, err, alien. It is an interloper that has
dumped accidental complexity into the heart of our logic.

One take on cohesion is that within a particular scope, the level of abstraction should remain consis-
tent. So what if we improved the consistency here? Listing 11.7 is a big improvement in this respect,
even if all that we have done is rename a class and a method.

9780137314911_print.indb 145 06/10/21 5:26 PM

ptg36503484

146 Chapter 11 Separat ion of Concerns

Listing 11.7 Storing a String in S3 via a Port

void doSomething(Thing thing) {
 String processedThing = process(thing);
 store.storeThings("myBucket," "keyForMyThing," processedThing);
}

Now there are some implications as a result of the change from Listing 11.6 to Listing 11.7. By mak-
ing the “invocation to store” more consistent with the other ideas in this function, we have increased
the abstraction. We have also started to push our design in a different direction.

Remember the code that I didn’t show; by making this one simple change, I have made a bunch
of implementations for that initialization wrong. If I abstract storage in this way, it makes no sense
at all for all of that initialization to be within the scope of this class or module. It’s much better to
externalize it completely.

So now I am going to hide all of that initialization somewhere else. That means I can test it, in
abstract, separate from this code. It means that if I choose to use dependency injection to supply
my store, I can test this code without the need for a real store. It also means that I can choose where
I want to store things outside of this code, supplying different kinds of stores in different contexts so
my code is more flexible.

You can think of the new abstraction as a port, or a vector through which information flows.
Whether or not you decide to make the port polymorphic is entirely up to you and the circum-
stances in your code, but even where you don’t, this code is better. It is better because you have
improved the separation of concerns, improved the cohesion by maintaining a more consistent
level of abstraction, and improved both its readability and maintainability.

The concrete implementation of this port is an adapter that acts as a translation service, translating
ideas from, in this example, the context of “things” to the context of “AWS S3 Storage.”

After this change, our code doesn’t know anything about S3; it doesn’t even know that S3 is being
used.

The key idea here is that the code is written from a more consistent frame of reference. It maintains
that more consistent abstraction.

What I have described here is sometimes called the Ports & Adapters pattern, also sometimes
referred to as hexagonal architecture when applied at the level of a service or subsystem.

The value of this, in design, is very significant. It is almost never the case that your code cares about
every single detail of an API that it consumes. You nearly always deal with a subset of such APIs.
The port that you create only needs to expose the minimal subset that you choose to use, so it will
nearly always be a simpler version of the API that you are interacting with.

9780137314911_print.indb 146 06/10/21 5:26 PM

ptg36503484

147When to Adopt Por ts & Adapters

The trouble with writing a book that talks about code is that to convey ideas, the code examples
need to be small and simple, or the ideas get lost in the complexity of the code. But what about
when you are trying to show the improvement in simplicity?

So bear with me. Imagine that we had a whole system written along the lines of Listing 11.6: tens,
hundreds, maybe even thousands of interactions through an s3client. Then Amazon upgrades the
interface to the S3 service, or at least the Java client library. Version 2 has a different programming
model, so now we have to go and change tens, hundreds, or thousands of lines of code to take
advantage of the new client library.

If we have created our own abstraction, our own Port & Adapter for S3, that does just, and only just,
what our code needs, we can probably use that in more than just one place in the code. Maybe we
use it everywhere, maybe there are some cases that are more complex, and maybe we have a dif-
ferent, separate Port & Adapter for those cases. Either way, we have significantly reduced our main-
tenance effort. We could completely rewrite the adapter to use the new client library. It wouldn’t
affect the code that uses it at all.

This approach embodies many of the goals of good design. By working to manage complexity, we
also insulate our code against change—even unexpected or unpredictable change.

When to Adopt Ports & Adapters
When people discuss the Ports & Adapters approach, they are usually discussing it in the context of
a translation layer at the boundaries between services (or modules).

This is good advice. In his book Domain Driven Design,2 Eric Evans recommends:

Always translate information that crosses between Bounded Contexts.

In designing a system from services, I, and others, advise that we should aim to align our services
with a bounded context. This minimizes coupling and improves the modularity and cohesion of our
services.

Combined, these two pieces of advice suggest a simple guideline of “Always translate information
that flows between services,” or to put it another way, “Always communicate between services using
Ports & Adapters.”

When I started writing the previous sentence, I first wrote “rule” rather than “guideline” and then
quickly corrected myself. I can’t, in good conscience, describe this as a rule, because there are some-
times corner cases that break the rule. However, my strong advice is to assume, as a default position,
that all information exchanges between services will be translated via an adapter, whatever the
technical nature of the API.

2. Domain Driven Design is a book by Eric Evans describing how to model the problem domain in software as a
guiding principle in design. See https://amzn.to/2WXJ94m.

9780137314911_print.indb 147 06/10/21 5:26 PM

https://amzn.to/2WXJ94m

ptg36503484

148 Chapter 11 Separat ion of Concerns

This doesn’t mean the adapter needs to be lots of code or complex, but from a design perspective,
each service or module should have its own view of the world and should defend that perspective.
If information is sent that breaks that view, that is a serious problem for the code.

We can protect our code two ways, and we can use an adapter that translates things into our world-
view as they arrive at the edges of our system, allowing us to validate our inputs to the degree to
which we care about them. Or we can wrap up stuff that we don’t trust and ignore it so that we can
protect our systems from dubious external changes.

If we are writing a messaging system of some kind, for example, there are things that we need to
know, and there are things that we should certainly not know.

We probably need to know who sent a message and where it is going. We probably need to know
how big the message is and maybe whether we should retry it if there is a problem. We should cer-
tainly not know what the message is saying! That would immediately couple the technicalities of
messaging to the semantics of the conversation that the messaging is being used for and would be
very poor design.

This may or may not seem obvious, but I also see a lot of code that makes precisely this kind of
mistake. If I were building a messaging system, I would “wrap up” the content of the message in a
packet of some kind that insulates the messaging system from the content of the packets, the
messages themselves.

What Is an API?
This starts to get into a bit of design philosophy: what is an API? I would argue for a fairly practical
definition:

An application programming interface (API) is all of the information that is exposed to consumers of
a service, or library, that exposes that API.

This is different from what some developers think of when we use the term API.

There has been a morph over time in what the term “API” means. In part, this is probably due to the
success of the REST approach to creating services. It is common, at least in informal conversations
with developers, that the term “API” is used as a synonym for “Text over HTTP.” This is certainly one
form of API, but it is only one; there are many more.

Strictly any means of communication between different bits of code, meant to support
programming of some kind, is an API. This is where it is important to think about the information
that our code interacts with.

Imagine, for a moment, a function that takes a binary stream of data as an argument. What is the
API?

Is it only the signature of the function? Well, maybe, if the function treats the binary stream as a
black-box and never looks inside the stream, then yes, the signature of the function defines its
coupling with its callers.

9780137314911_print.indb 148 06/10/21 5:26 PM

ptg36503484

149Using TDD to Dr ive Separat ion of Concerns

However, if the function interacts with the contents of the binary stream in any way, that is part of
its contract. The level of interaction defines the degree to which it is coupled, with the information
in the stream.

If the first eight bytes in the stream are used to encode its length, and that is all that the function
knows or cares about the stream, then the function signature, plus the meaning of the first eight
bytes and how the length is encoded within them, are “the API.”

The more that the function knows of the content of the stream of bytes, the more coupled to it it
is, and the greater the surface area of the API. I see many teams that ignore the fact that the data
structures in its inputs that their code understands, and processes, are part of that code’s public API.

Our adapters need to deal with the whole API. If that means translating, or at least validating, the
content of a binary stream of inputs, then so be it. The alternative is that our code may break when
someone sends us the wrong stream of bytes. This is a variable that we can control.

Designing with the assumption that we will always add Ports & Adapters at these points of com-
munication between modules and services is a much stronger default stance than not. Even if the
“adapter” is a placeholder for the future, having that placeholder in place gives us the opportunity,
should the nature of the API change in any way to cope with those changes without having to
rewrite all of our code.

This is the classic model of Ports & Adapters. I recommend thinking about this at finer-grained
levels, too. I don’t mean to suggest that you always write explicit translations, but the idea of trying
to maintain a consistent level of abstraction within any piece of code, no matter how small
(see Listing 11.6), is a good one.

As a default stance, or a guideline, I recommend that you always add Ports & Adapters where the
code that you talk to is in a different scope of evaluation, such as a different repo or a different
deployment pipeline. Taking a more defensive stance in these situations will make your code more
testable, yet again, and more robust in the face of change.

Using TDD to Drive Separation of Concerns
I have already described how the ideas of designing to improve the testability of our code help us
improve its quality, not just in the simplistic sense of “does it work,” but in the more profound
sense of building the kind of quality into our products that makes them capable of ongoing
maintenance and development.

If we design our code using the ideas of separation of concerns as a guiding principle, including the
ideas of maintaining a consistent level of abstraction within any given, even small, context, then we
leave the door open to incremental change. Even if we don’t yet know the details of how something
will be communicated, stored, or interacted with in general, we can write code and make progress.

Later, as we learn more, we can use the code that we wrote in ways that we hadn’t thought of when
we wrote it. This approach allows us to take a more evolutionary approach to design, growing our
systems, step-by-step, as our understanding deepens, into much more sophisticated, much more
capable, versions in the future.

9780137314911_print.indb 149 06/10/21 5:26 PM

ptg36503484

150 Chapter 11 Separat ion of Concerns

TDD is the most powerful tool that we can wield to achieve that testability. By driving all of our
development from the perspective of testing, we dramatically change the focus of our designs.

Specifically in the context of separation of concerns, our tests become more difficult to write the
more that concerns are conflated within the scope of a test. If we organize our development around
testing and drive our development through testing, then we are confronted much earlier in the
process by the costs and benefits of our design decisions.

This faster feedback is, naturally, a good thing, allowing us the opportunity to spot flaws in our
design much sooner than any other technique, apart from us just being smarter than we are, over
which we can exert only a limited degree of control. There is nothing wrong with being smart, but
the best way to become “smarter” is to work in smarter ways, which is really the aim of this book.
TDD is one of those important “smarter ways.”

Summary
Separation of concerns is certainly an attribute of high-quality code. If you have two pieces of code
that fulfil exactly the same function and one has good separation of concerns and the other doesn’t,
then the first is easier to understand, easier to test, easier to change, and more flexible.

Separation of concerns is also the easiest design heuristic to adopt of the collection here.

We could debate the modularity or cohesion of some code or system. As you can see, I consider
these ideas to be extremely important, but ultimately their measurement is somewhat subjective.
While we can probably agree on bad examples, we’d probably struggle to, at the limit, define what
ideal modularity or cohesion was.

Separation of concerns is different. If your module, class, or function does more than one thing, your
concerns aren’t really separate. The result is that separation of concerns is a fantastic tool to guide
us, definitively, in the direction of the design of better software.

9780137314911_print.indb 150 06/10/21 5:26 PM

ptg36503484

151

Information Hiding and Abstraction
Information hiding and abstraction is defined as “the process of removing physical, spatial, or
temporal details or attributes in the study of objects or systems to focus attention on details of
greater importance.”1

I lumped together two slightly different ideas in computer science in the title of this chapter; they
are different but related, and for the purpose of thinking about fundamental principles for software
engineering, they are best considered together.

Abstraction or Information Hiding
I conflate these ideas because I don’t think that the difference between the two is enough to really
concern us. What I am talking about here is drawing lines, or seams, in our code so that when we
look at those lines from the “outside,” we don’t care about what is behind them. As a consumer of a
function, class, library, or module, I should not need, or care, to know anything about how it works,
only how I use it.

Some people take a much narrower view of information hiding than this, but I don’t see that it
adds anything useful. If you can’t get away from worrying about “information hiding being only
about data” (it’s not), then whenever I say “information hiding,” think “abstraction.”

If you can’t get away from thinking “abstraction” means only “creating abstract concept-objects,”
then while that is part of the definition, it is not what I mean, so maybe think “information hiding.”

1. Source: Wikipedia, https://en.wikipedia.org/wiki/Abstraction_(computer_science)

12

9780137314911_print.indb 151 06/10/21 5:26 PM

https://en.wikipedia.org/wiki/Abstraction_(computer_science)

ptg36503484

152 Chapter 12 I nformation H iding and Abstrac t ion

The information that I am hiding is the behavior of the code. It includes implementation detail
as well as any data that it may or may not use. The abstraction that I present to the outside world
should achieve this trick of keeping secrets from other parts of the code.

It should be obvious that if our aim is to manage complexity so that we can build more complex
systems than we can comfortably hold inside our heads, then we need to hide information.

We’d like to be able to focus on the work/code in front of us without worrying about what is going
on elsewhere and how stuff that we don’t need to care about right now works. This seems funda-
mental, but there is a lot of code in the world that does not look like this. Some code is fragile to
change, where change in one place affects other parts of the code. There is code where the only
way to make progress is to be so smart that you understand how most of the system works. That is
not a scalable approach!

What Causes “Big Balls of Mud”?
We sometimes call these difficult to work on codebases big balls of mud. They are often so tangled,
so convoluted, that people are scared to change them. Most organizations, particularly bigger orga-
nizations, that have built software for any length of time will own some tangled code like this.

Organizational and Cultural Problems
The causes are complex and diverse. One of the most common complaints that I hear from software
developers and software development teams is “my manager won’t let me XXX,” where “XXX” is
either “refactor,” “test,” “design better,” or even “fix that bug.”

There are certainly some unpleasant organizations in the world. If you work somewhere like that,
my advice is to seek better employers. However, in the vast majority of cases, this complaint is sim-
ply not true, or at least not entirely true. At worst this is an excuse. I dislike blaming people, though,
so a more charitable interpretation is that this is based on an important misunderstanding.

The first thing to say is why do we, as software developers, need to ask for permission to do a good
job? We are the experts in software development, so we are best placed to understand what works
and what doesn’t.

If you hire me to write code for you, it is my duty to you to do the best job that I can. That means I
need to optimize my work so that I can reliably, repeatably, and sustainably deliver code over a long
period of time. My code needs to solve the problem that I am faced with, and it needs to fulfill the
needs of my users and ambitions of my employers.

So, I need to create code that works, but I also need to sustain my ability to do so over time, repeat-
ably and reliably. I need to maintain my ability to modify the code as I learn more about the prob-
lem that we are solving and the system that we are developing.

9780137314911_print.indb 152 06/10/21 5:26 PM

ptg36503484

153Organizat ional and Cultural Problems

If I were a chef preparing a meal in a restaurant, I could probably prepare one meal more quickly if
I decided not to clean up my tools and work area when I finished. That will probably work for one
meal. It may even work for two meals; it would be disgusting, but it may work. If I worked like that
all of the time, though, I’d get fired!

I’d get fired because I’d give the patrons of the restaurant food poisoning. Even if I didn’t get fired,
by the time I got to the third meal, I would be far slower and less productive because the mess that
I had made would get in the way of my work. I’d have to clear a work area and the tools I was using
for every task. I’d have to struggle with tools that were no longer sharp enough, and so on. Does
this sound familiar?

If you hired me as a chef, you would never say, “you have permission to sharpen your knives” or
“it is your responsibility to clean your work area,” because as a professional chef, you, and I, would
assume that those things are a fundamental part of being a professional. As a chef, that would be
part of my duty of care.

As software professionals, it is our duty to understand what it takes to develop software. We need
to own the responsibility for the quality of the code that we work on. It is our duty of care to do a
good job. This is not altruistic; it is practical and pragmatic. It is in the interest of our employers, our
users, and ourselves.

If we work to create and maintain the quality of our code, our employers will get the new features
that they want more efficiently. Our customers will get code that makes more sense and is more
usable, and we will be able to make changes without being constantly nervous of breaking things.

This matters for a variety of reasons, not the least because the data is very clear.2 Software is not a
game of short-term wins. If you are dropping testing, avoiding refactoring, or not taking time to find
more modular, more cohesive designs to achieve some short-term delivery target, you are going
more slowly, not faster.

It is reasonable for an organization creating software to want to do it efficiently. There is an
economic impact that affects all of us who work for such an organization.

If we want the organizations in which we work to thrive and for us to have a more pleasant
experience while building the software that helps our organizations to thrive, then we need to
work effectively.

Our aim should be to do whatever it takes to build better software faster. The data is in: the
Accelerate book describes some of what it takes, and that certainly does not involve naively cutting
corners in quality. The reverse is true.

One of the key findings of the “State of DevOps” report that underpins the scientific approach to
analyzing the performance of software teams outlined in the Accelerate book is that there is no
trade-off between speed and quality. You don’t create software faster if you do a poor job on
quality.

2. The Accelerate book describes how teams that take a more disciplined approach to development spend “44%
more time on new work” than teams that don’t. See https://amzn.to/2YYf5Z8.

9780137314911_print.indb 153 06/10/21 5:26 PM

https://amzn.to/2YYf5Z8

ptg36503484

154 Chapter 12 I nformation H iding and Abstrac t ion

So when a manager asks for an estimate for a piece of work, it is not in your interest, your manager’s
interest, or your employer’s interest to cut corners on quality. It will make you go slower overall,
even if your manager is dumb and thinks that it will.

I have certainly seen organizations that, either intentionally or unintentionally, applied pressure on
developers to speed up. Often, though, it is developers and development teams that are complicit
in deciding what “speeding up” entails.

It is usually the developers that rule out quality, not the managers or organization. Managers and
organizations want “better software faster,” not “worse software faster.” In reality, even that is not the
trade-off. As we have already seen, the real trade-off, over long periods of time, is between “better
software faster” and “worse software slower.” “Better” goes hand in hand with “faster.” This is impor-
tant for all of us to recognize and to believe. The most efficient software development teams are not
fast because they discard quality but because they embrace it.

It is the professional duty of a software engineer to recognize this truth and to always offer advice,
estimates, and design thoughts based on a high-quality outcome.

Don’t parse estimates and predictions to separate out the time to do a good job; assume that your
managers, co-workers, and employers want you to do a good job, and do it.

There is a cost to doing work. In cooking, part of that cost is the time it takes to clean up and main-
tain your tools as you go. In software development, those costs are to refactor, to test, to take the
time to create good designs, to fix bugs when they are found, to collaborate, to communicate, and
to learn. These are not “nice to have” options; these are the foundations of a professional approach
to software development.

Anyone can write code; that is not our job. Software development is more than that. Our job is to
solve problems, and that requires us to take care in our design and consider the effectiveness of the
solutions that we produce.

Technical Problems and Problems of Design
Assuming that we give ourselves permission to do a good job, the next question is, what does that
take? That is really the theme for this book. The techniques that allow us to optimize for learning,
outlined in Part II, and the techniques described in this part, combined, give us the tools that allow
us to do a better job.

Specifically, in the context of avoiding and correcting big balls of mud, though, there is a mindset
that is important to adopt. This is the mindset that it is a good thing, a sensible thing, to change
existing code.

9780137314911_print.indb 154 06/10/21 5:26 PM

ptg36503484

155Technical Problems and Problems of Design

Many organizations are either afraid to change their code or have some kind of reverence for it that
belies the reality. I would argue the reverse: if you can’t, or won’t, change the code, then the code is
effectively dead. To quote Fred Brooks again:

As soon as one freezes a design, it becomes obsolete.3

My friend Dan North has spoken about an interesting idea. Dan has a gift for capturing an idea in a
clever turn of phrase. He talked about the “software half-life of a team” as a metric for quality.

Now neither I nor Dan have any data to back up this idea, but it is an interesting one. He says that
the quality of the software produced by a team is a function of its software half-life—that is, the
time that it takes the team to rewrite half of the software that they are responsible for.

In Dan’s model, good teams will probably rewrite half the software that they are responsible for in
months; low-performing teams may never rewrite half.

Now I am pretty sure that Dan’s idea is very contextual; when he came up with this, he was working
in a very good, fast-paced, financial trading team. I am equally certain that there are many teams
where this rule doesn’t apply. Nevertheless, there is certainly a grain of truth here.

If we are, as I contend, a discipline foundationally rooted in our ability to learn, then when we learn
new things that change our view on what is optimal for our design (whatever that means in our
context), at that point, we should be able to change it to reflect our new, deeper understanding.

When Kent Beck picked a subtitle for his famous book on Extreme Programming, he chose Embrace
Change. I don’t know what he had in mind when he picked that subtitle, but I have come to think
that it has much wider implications than I imagined when I first read his book.

If we buy in to this fundamental philosophy that we must retain our ability to change our ideas, our
teams, our code, or our technology, as we learn more, then nearly everything else that I talk about
in this book follows on as a natural consequence.

Working in ways that leave the door open to us making a mistake and being able to correct it; deep-
ening our understanding of the problem that we face and reflecting our new understanding in our
design; evolving our products and technologies incrementally in the direction of success wherever,
or whatever, that may be—these are all targets for good engineering in software.

To be able to do this, we need to work in small steps that are easy to undo. We need our code to be
a habitable space that we can revisit, maybe months or years later, and still understand. We need
to be able to make a change in one part of the code and not have it affect others. We need a way
to quickly and effectively validate that our changes were safe. Ideally, we’d also like to be able to
change some of our architectural assumptions as our understanding, or maybe the popularity of
our system, changes.

All the ideas in this book are relevant to that, but abstraction or information hiding feels to me to
represent the clearest route to habitable systems.

3. A quote from Fred Brooks’ book Mythical Man Month, https://amzn.to/3oCyPeU

9780137314911_print.indb 155 06/10/21 5:26 PM

https://amzn.to/3oCyPeU

ptg36503484

156 Chapter 12 I nformation H iding and Abstrac t ion

Raising the Level of Abstraction

What would it take to get a Brooksian order-of-magnitude improvement? One avenue to
explore is to raise the level of abstraction of programming.

The most common theme, in this line of thinking, has been to strengthen the relationship
between the high-level diagrams that we sometimes use to describe our systems. “Wouldn’t it
be good if when I draw a picture of my system, I can use that picture to program my
system, too?”

Over the years there have been lots of attempts at implementing this, and periodically new
versions of this idea tend to crop up. At the time of writing, the current incarnation of this
approach is called low code development.

However, there are several problems that seem to get in the way of this approach.

One common approach to diagram-driven development is to use the diagram to generate
source code. The idea here is to use the diagrams to create the broad structure of the code, and
then the detail can be filled in, by hand, by a programmer. This strategy is pretty much doomed
to failure by one difficult-to-solve problem. The problem is that you are almost always going to
learn more as the development of any complex system evolves.

At some point, you will need to revisit some of your early thinking. This means that your first
version of your diagram and so the skeleton structure of your system is wrong and will need to
change as your understanding deepens. The ability to “round-trip” or create a skeleton for your
code, modify the detail by hand, change your mind, regenerate the diagram from the code,
modify it, but keep the detailed changes is a tricky problem. It is the hurdle at which all such
efforts, so far, have fallen.

So how about doing away with the manual coding step altogether? Why not use the diagrams
as the code? This too has been tried lots of times. These sorts of systems usually demo extremely
well. They look really nice and easy when building some simple, sample system.

However, there are two big problems. It is actually hard to raise the level of abstraction to
a degree where you gain, by drawing pictures rather than writing code. You lose all of the
benefits that, over time, we have evolved to support more conventional programming
languages such as exception handling, version control, debugging support, library code,
automated testing, design patterns, etc.

The first problem is the reason why these things demo so well but don’t really scale to real-
world systems. The problem is that while it is easy to create a graphical “language” that lets us
express simple problems succinctly, it is much more difficult to create a similar visual “language”
that provides general-purpose tools that allow you to create any old piece of logic. Turing-
complete languages are really built out of some extremely common but quite low-level ideas.
The level of detail that we require to describe and encode a working, complex software system
seems to be inherently intricate and fine-grained.

9780137314911_print.indb 156 06/10/21 5:26 PM

ptg36503484

157Fear of O ver-Engineer ing

Consider the need to add a graph to a spreadsheet. Most spreadsheet programs offer tools that
allow you to add a graph, err, graphically. You can select some rows and columns of data in your
spreadsheet and select a picture of the type of graph that you would like to add, and for simple
cases, the program will generate a graph for you. These are good tools.

It gets trickier, though, if the data doesn’t easily fit one of the simple, predefined patterns. The
more specific your graph requirements are, the more detailed your instructions to the graphing
system in your spreadsheet need to become. There comes a point where the limitations of the
tools make them harder to use rather than easier. Now, you not only need a clear idea of how
you want your graph to work but also a deep understanding of how to get around, or apply, the
programming model that was in the head of the graphing-system developer.

Text is a surprisingly flexible, concise way of encoding ideas.

Fear of Over-Engineering
Many factors push developers to abdicate responsibility for quality. One of them is pressure, real
or perceived, to get the job done efficiently. I have heard commercial people worry about software
developers and teams “over-engineering.” This is a real fear, and we technical professionals are to
blame. We have been guilty of over-engineering sometimes.

Abstraction vs. Pragmatism

I once worked on a project for a client, a big insurance company. This was a “rescue project.” I
worked for a consultancy that was pretty well known for being able to go in and deliver effec-
tive solutions to projects that were stuck or had failed in previous attempts.

This project had failed fairly spectacularly, twice. It had been in development for more than
three years, and they had nothing to show for it that was usable.

We started work and were making decent progress on a replacement. We were approached by
an architect from the “strategy group” or some such name. He insisted that our software must
comply with the “global architecture.” So I, as the tech lead for the project, looked into what that
would entail.

They had a grand plan for a distributed, service-based component architecture that abstracted
their entire business. They had services for technical things as well as domain-level, useful
behaviors. Their infrastructure would look after security and persistence, as well as allow the
systems in the enterprise to be fully integrated with each other.

9780137314911_print.indb 157 06/10/21 5:26 PM

ptg36503484

158 Chapter 12 I nformation H iding and Abstrac t ion

As by now, I am sure you suspect, this was all vapor-ware. They had lots of documents and a fair
amount of code that didn’t work as far as I could see. This project was being built by a team of
more than 40 people and was about three or four years late. All projects were mandated to use
this infrastructure, but no project ever did!

It sounded like magic because it was magic; it was imaginary.

We politely declined and finished the system that we were building without using the ideas or
tech from this architecture.

On paper the architecture looked fine, but in practice, it was only theory.

We are technologists. As a result, we share certain tendencies. One of those tendencies that we
should be aware of, and guard against, is chasing “technically shiny ideas.” I am as guilty as anyone
of being interested in technical ideas. This is part of the appeal of our discipline, the kind of learn-
ing that we value. However, if we are to be engineers, we must adopt a degree of pragmatism,
skepticism even. Part of my definition for engineering, at the start of this book, included the phrase
“within economic constraints.” We should always be thinking of the simplest route to success, not
the coolest, not the one with the most tech that we can add to our CVs or résumés.

By all means, keep up-to-date with new ideas. Be aware of new technologies or approaches to our
work, but always evaluate their use honestly in the context of the problem that you are trying to
solve. If you are applying this tech, or idea, to learn if it is useful, then recognize that fact and carry
out your exploration quickly and efficiently as trial, prototype, or experiment, not as the cornerstone
of your new architecture on which the future of the company depends. Be prepared to discard it if it
doesn’t work out, and don’t risk the entire development on tech that looks cool.

In my experience, if we take this idea of “striving for simplicity” seriously, we are more, rather than
less, likely to end up doing something cool. We are more, rather than less, likely to enhance the
value of our CVs and résumés, too.

There is another way in which we are often lured to over-engineer our solutions. That is to make
them future-proof. If you have ever said or thought, “We may not need this now, but we probably
will in the future,” then you were “future-proofing.” I was as guilty of this as anyone else in the past,
but I have come to regard it as a sign of design and engineering immaturity.

We attempt this kind of design future-proofing to give us some insurance that we will be able to
cope with future enhancements, or changes in requirements. This is a good aim, but the wrong
solution.

Referring to Kent Beck’s Extreme Programming Explained book again, he introduced me to the
following concept:

YAGNI: You Ain’t Gonna Need It!

9780137314911_print.indb 158 06/10/21 5:26 PM

ptg36503484

159I mproving Abstrac t ion Through Test ing

Kent’s advice was that we should write code to solve the problem that faces us right now and only
that. I strongly reiterate that advice, but it is part of a larger whole.

As I have already said many times in this book, software is weird stuff. It is almost infinitely flexible
and extremely fragile. We can create any construct that we want in software, but we run the risk of
damaging that construct when we change it. The problem that people are trying to address when
they over-engineer their solutions, by attempting to future-proof them, is that they are nervous of
changing their code.

In response to that nervousness, they are trying to fix the design in time now, while they are paying
attention to it. Their aim is that they won’t need to revisit it in the future. If you have made it this far
through this book, you will know by now that I think that this is a very bad idea, so what could we
do instead?

We could approach the design of our code so that we can return to it at any point in the future
when we have learned something new and change it. We can take advantage of that nearly infinite
flexibility. Now the problem that we need to fix is that of the fragility of our code.

What would it take to give us confidence that we can safely change our code in the future? There
are three approaches, and one of them is stupid.

We could be so smart that we completely understand the code and all of its implications and
dependencies so that we can safely make changes. This is the hero-programmer model, and
although this is the stupid one, this is also one of the more common strategies as far as I can tell.

Most orgs have a usually small number of people “heroes”4 who are called on to “save the day” when
things go wrong or who are called on for the tricky changes that need to be made. If you have a
hero in your organization, she needs to be working to spread her knowledge and to work with oth-
ers to make the system more understandable. This is profoundly more valuable than the more usual
firefighting that “heroes” more commonly undertake.

The real solutions to the problem of being afraid to change our code are abstraction and testing.
If we abstract our code, we are, by definition, hiding the complexity in one part of the system from
another. That means that we can more safely change code in one part of the system, with a much
higher level of confidence that our change, even if wrong, will not adversely affect other parts. To be
even more sure of this, we also need the testing, but as usual the value of testing is not that simple.

Improving Abstraction Through Testing
In Figure 4.2, I showed a flattened Cost of Change graph, representing the ideal situation in which
we would like to be able to make any change at any time, for roughly the same cost in terms of time
and effort.

4. There is a lovely, fictional example of this in Gene Kim’s book The Phoenix Project, where the character Brent
Geller is the only person who can save the day.

9780137314911_print.indb 159 06/10/21 5:26 PM

ptg36503484

160 Chapter 12 I nformation H iding and Abstrac t ion

To achieve this flat Cost of Change curve, we’d need an effective, efficient strategy for regression
testing, which really means a wholly automated strategy for regression testing. Make a change, and
run the tests so that you can see where you broke things.

This idea is one of the cornerstones of continuous delivery, the most effective starting point for an
engineering approach that I know of. We work so that our software is “always in a releasable state,”
and we determine that “releasability” through efficient, effective, automated testing.

However, there is another aspect of testing that is important, beyond merely catching our mistakes,
and it is much harder for people to spot if they have never worked this way.

That is the impact of testability on design that I have described previously. We will explore this idea
in more depth in Chapter 14. Specifically, though, in the context of abstraction, if we approach our
tests as mini-specifications for the desirable behavior of our code, then we are describing that desir-
able behavior from the outside-in.

You don’t write specification after you have completed the work; you need them before you start.
So we will write our specifications (tests) before we write the code. Since we don’t have the code,
our focus is more clearly fixed on making our life easier. Our aim, at this point, is to make it as simple
as possible to express the specification (test) as clearly and simply as we can.

Inevitably then, we are, or at least should be, expressing our desires for the behavior that we want,
from our code from the perspective of a consumer of it, as clearly and simply as we can. We should
not be thinking about the implementation detail that will be required to fulfill that mini-specification
at this point.

If we follow this approach, then, by definition, we are abstracting our design. We are defining an
interface to our code that makes it easy to express our ideas so that we can write our test case
nicely. That means that our code is also easy to use. Writing the specification (test) is an act of
design. We are designing how we expect programmers to interact with our code, separate from how
the code itself works. All this before we have gotten to the implementation detail of the code. This
approach, based on abstraction, helps us separate what the code needs to do from how it does it.
At this point, we say little or nothing about how we will implement the behavior; that comes later.

This is a practical, pragmatic, light weight approach to design by contract.5

Power of Abstraction
As software developers, we are all familiar with the power of abstraction, as consumers. When we
become software producers though many developers pay abstraction too little attention in their
own code.

Early operating systems didn’t have much in the way of hardware abstraction compared to their
modern successors. These days if I want to change the video card in my PC, there are a whole stack

5. Design by contract is an approach to software design focused on the contracts, which are specifications that
the system, or components of it, support. See https://en.wikipedia.org/wiki/Design_by_contract.

9780137314911_print.indb 160 06/10/21 5:26 PM

https://en.wikipedia.org/wiki/Design_by_contract

ptg36503484

161Power of Abstrac t ion

of abstractions that insulate my applications from such changes, so I can make that change in the
confidence that my apps will most likely continue to work and display things.

Modern cloud vendors are busy working on abstracting away much of the operational complexity
of running complex, distributed, scalable applications. An API like that of Amazon Web Service’s S3
is deceptively simple. I can submit any sequence of bytes along with a label that I can use to retrieve
it and the name of a “bucket” to place it in, and AWS will distribute it to data centers around the
world and make it available to anyone who is allowed to access it and provide service-level agree-
ments that will ensure that access in all but the most catastrophic of events is preserved. This is
abstracting some fairly complex stuff!

Abstractions can also represent an organizing principle on a broader front. Semantically tagged
data structures like HTML, XML, and JSON are extremely popular for communications. Some people
say that they prefer them because they are “plain text,” but that is not really true. After all, what does
plain text mean for a computer? It’s all electron flows through a transistor in the end, and electrons
and transistors are abstractions, too!

The appeal of HTML or JSON for messages sent between different code modules is that the struc-
ture of the data is explicit in the communication, and the schema is transmitted along with the
content. We could do that with other, much higher-performance mechanisms, like Google’s Protocol
Buffers6 or SBE,7 but mostly we don’t.

Developers really like the (in practice) horribly inefficient mechanisms like JSON or HTML because
everything can work with them. That is because of another important abstraction: plain text. Plain
text isn’t plain, and it isn’t text; it is a protocol and an abstraction that allows us to deal with infor-
mation without worrying too much about how that information is organized other than at some
pretty basic level of it being represented as a stream of characters. Nevertheless, it is still an abstrac-
tion that is hiding information from us.

This “plain text” ecosystem is pervasive in computing, but it isn’t natural, or inevitable. People
designed it, and it has evolved over time. We needed to agree on things like byte ordering and
encoding patterns. All of that is before we even begin to think about the underlying abstractions,
through which we understand the hardware that our software runs on.

The “plain text” abstraction is an extremely powerful one. Another extremely powerful abstraction
is that of “files” in computing, brought to its height in the Unix model of computing in which every-
thing is a file. We can connect logic to build up new, more complex systems, by “piping” files from
the output of one module to the input of another. All of this is “made up” and is just a useful way of
imagining and organizing what is really going on.

6. Google’s Protocol Buffers are meant to be a smaller, faster, more efficient version of XML. Read more at
https://bit.ly/39QsPZH.

7. Simple Binary Encoding (SBE) is used in finance. It is a binary data encoding approach that allows you to
define data structures and have code generated to translate them at either end. It shares some of the
properties of other semantic data encoding approaches, but with lower performance overhead. Read more
here: https://bit.ly/3sMr88c.

9780137314911_print.indb 161 06/10/21 5:26 PM

https://bit.ly/39QsPZH
https://bit.ly/3sMr88c

ptg36503484

162 Chapter 12 I nformation H iding and Abstrac t ion

Abstractions are fundamental to our ability to deal with computers. They are fundamental to our
ability to understand and deal with the systems that we create to add value to our computers, too.
One way of looking at what it is that we do when we write software (and it is the only thing that we
do in some ways) is to create new abstractions. The key is to create good ones.

Leaky Abstractions
Leaky abstractions are defined as “an abstraction that leaks details that it is supposed to abstract
away.”

This idea was popularized by Joel Spolsky, who went on to say this:

All non-trivial abstractions are leaky.8

I have occasionally heard people excuse terrible code by saying something along the lines of “all
abstractions are leaky, so why bother?” Well, this completely misses the point of both the original
post and of abstraction in general.

Computers and software would not exist without abstraction. The idea of “leaky abstractions” is not
an argument against them; rather, it describes that abstractions are complex things that we need to
take care over.

There are also different kinds of “leaks.” There are leaks that are impossible to avoid, for which
the most effective course is to think about them carefully and work to minimize their impact. For
example, if you want to build a low-latency system that processes data at “as close to the limits
of the hardware as you can get,” then the abstractions of “garbage collection” and “random access
memory" will get in the way because they leak in terms of time, by making the latency a variable.
Modern processors are hundreds of times faster than RAM, so access is not random if you care
about time. There is a different cost, in time, depending on where the information that you want
to process comes from. So you need to optimize to take advantage of the hardware; you need to
understand its abstractions, caches, prefetch cycles, and so on, and allow for them in your design, if
you want to minimize the impact of the leak.

The other kind of leak is really a point at which the illusion that your abstraction attempts to convey
breaks down because you ran out of time, energy, or imagination to cater for that break in your
design.

An authorization service that reports functional failures as HTML errors and a business logic module
that returns NullPointerExceptions are both breaking business-level abstractions with techni-
cal failures. Both of these are a kind of break in the continuity of the illusion that the abstraction is
intended to convey.

In general, try to cope with this second kind of leak by trying to maintain a consistent level of
abstraction as far as possible. It may be acceptable that a remote component exposed as a web

8. You can read Joel Spolsky’s original post here: https://bit.ly/2Y1UxNG.

9780137314911_print.indb 162 06/10/21 5:26 PM

https://bit.ly/2Y1UxNG

ptg36503484

163Pick ing Appropr iate Abstrac t ions

service of some kind reports communications failures via HTML; that is a problem in the technical
realm of abstraction of networking and communications, not in the world of the service itself. The
mistake is using HTML error codes for business-level failures of the service. This is a break in the
abstraction.

One take on this is that abstraction, all abstraction, is fundamentally about modeling. Our aim is
to create a model of our problem that helps us reason about it and helps us to do work. I like this
quote from George Box:

All models are wrong, some models are useful.9

This is always the situation that we are in. However good our models, they are representations of
truth, not the truth itself. Models can be enormously useful even when fundamentally untrue.

Our aim is not to achieve perfection but to achieve useful models that we can use as tools to solve
problems.

Picking Appropriate Abstractions
The nature of the abstractions that we choose matters. There is no universal “truth” here; these are
models.

A good example of this are maps (the human kind of “map,” not the computer language data struc-
ture). All maps are abstractions of the real world, of course, but we have different types of abstrac-
tion depending on our needs.

If I want to navigate a boat or a plane to a destination, it is useful to have a map that allows me to
measure a course between two points. (This kind of map is, strictly, called a chart, which means that
I can measure a “bearing” on a chart, and if I steer that course, I will get to the right place.) The idea
of the constant bearing chart was invented by Mercator in 1569.

Without boring you with too much detail, constant-bearing charts are based on things called
Rhumb-lines. You can measure a bearing on this kind of map, and if you start off at point A and sail
(or fly) that bearing, you will end up at point B.

Now, as we all know, the world isn’t a flat plane. It is a globe, so in reality this is not the shortest
distance between A and B because on the surface of a sphere the shortest distance between two
points is a curve, and that means that the bearing changes constantly. So the abstraction of a chart
hides the more complex math of curved planes and provides a practical tool that we can use to plan
our course.

This abstraction leaks in the fact that the distance that you travel is longer than absolutely neces-
sary, but since we are optimizing for ease of use, while planning and sailing, all is good.

9. A quote from statistician George Box, though the idea is older. See https://bit.ly/2KWUgbY.

9780137314911_print.indb 163 06/10/21 5:26 PM

https://bit.ly/2KWUgbY

ptg36503484

164 Chapter 12 I nformation H iding and Abstrac t ion

A completely different abstraction is used for most underground train maps. This was invented by
Harry Beck in 1933.

Harry’s map has become a design classic, and the idea is used all over the world to depict how to
get around on an underground train network. Harry realized that when navigating the London Tube
(London’s underground system), you don’t care where you are when you are in transit. So he built a
topologically accurate map of the network that bore no real relationship to the physical geography.

This style of map, this abstraction, allows passengers to see which trains go to which stations and
which stations have connections to other lines extremely clearly. But if you try to use it to walk
between the stations, the abstraction breaks down. Some stations are within a few paces of each
other but look far apart; others look close but are distant.

My point is that it is fine to have different abstractions—even different abstractions—for the same
thing. If we were tasked to thread a network cable between stations on the London Underground,
we’d be stupid to choose Harry’s map. But if we wanted to travel from Arsenal Tube Station to
Leicester Square for dinner, we’d be stupid to choose a geographical chart.

Abstraction, and the modeling that is at its heart, is a fundamental of design. The more targeted the
abstractions are to the problem that you are trying to solve, the better the design. Note, I didn’t say
“the more accurate the abstraction.” As Harry’s Tube map so clearly demonstrates, the abstraction
doesn’t need to be accurate to be enormously useful.

Yet again, testability can give us early feedback and inspiration in our attempt to come up with
useful abstractions.

One of the common arguments against unit testing, and sometimes against TDD, too, is that the
tests and the code become “locked together,” and everything becomes more difficult to change.
This is much more a criticism of unit testing, where the tests are written after the code is complete.
Inevitably, such tests are tightly coupled to the system under test, because they were written as
tests rather than as specifications. TDD suffers less from this problem because we write the test
(specification) first and are led to abstract the problem, as I have described.

The subtlety here, though, and the enormous value that TDD delivers, is that if I have written my
abstract specification, focusing on what the code should do and not how it achieves that outcome,
then what my test is expressing is my abstraction. So if the test is fragile in the face of change, then
my abstraction is fragile in the face of change. So I need to think harder about better abstractions. I
know of no other way of getting this kind of feedback.

The next chapter talks about coupling. Inappropriate coupling is one of the most significant
challenges for software development. This entire section of the book is really about the strategies
that allow us to manage coupling. The problem is that there is no free lunch. Overly abstract designs
can be as big a pain as under-abstracted designs. They can be inefficient and impose unwanted
developmental and performance costs. So, there is a sweet spot to hit, and the testability of our
system is a tool that we can use to hit it.

9780137314911_print.indb 164 06/10/21 5:26 PM

ptg36503484

165Abstrac t ions f rom the Problem Domain

In general, our objective should be to retain our ability to change our mind about implementation,
and as far as we can our design, without too much extra work. There is no fixed recipe here. This is
the real skill of good software development, and it comes with practice and experience. We need
to build up our instincts to be able to spot design choices that will limit our ability to change our
minds later and that allow us to keep our options open.

What this means is that any advice I offer here is contextual. However, here are a few guidelines,
rather than rules.

Abstractions from the Problem Domain
Modeling the problem domain will give your design some guide rails. This will allow you to achieve
a natural for the problem domain separation of concerns as well as helping you, maybe even
forcing you, to better understand the problem that you are attempting to solve. Techniques like
event storming10 are a great starting point to mapping out the territory of a problem.

Event storming can help you identify clusters of behavior that may represent concepts of interest,
and the interesting concepts are good candidates for modules or services in your design. It can
highlight bounded contexts and natural lines of abstraction in the problem domain that will tend to
be more decoupled from one another than other, more technical divisions.

10. Event storming is a collaborative analysis technique invented by Alberto Brandolini that allows you to
model interactions within a problem domain. See http://bit.ly/3rcGkdt.

Domain-Specific Languages

One idea that certainly is more promising in raising the level of abstraction is the idea of the
domain-specific language (DSL). However, by definition a DSL is not general purpose. It is,
intentionally, more narrowly focused and can be more abstract, hiding detail.

This is the effect that we really see when we see diagram-driven development systems demon-
strated. We are seeing the impact of a DSL—in this case a graphical one—on solving narrowly
scoped problems. In this space, these more constrained ways to represent ideas are extremely
powerful and useful.

DSL is an extremely useful tool and has an important role to play in developing powerful,
maybe even “user-programmable” systems, but it is not the same thing as general-purpose
computing, so it is not really the topic of this book; therefore, we will leave it there, but as a
brief aside, there is no better way to create effective test cases than to create a DSL that allows
you to express the desirable behaviors of your system as “executable specifications.”

9780137314911_print.indb 165 06/10/21 5:26 PM

http://bit.ly/3rcGkdt

ptg36503484

166 Chapter 12 I nformation H iding and Abstrac t ion

Abstract Accidental Complexity
Software runs on computers. The way that computers work presents its own series of abstractions
and constraints that we are forced to contend with. Some of these are deep, at the level of informa-
tion and information theory, like concurrency and sync versus async communications. Others are a
bit more hardware-implementation-specific like processor caching architecture, or the difference
between RAM and offline storage.

Except for the most trivial of systems, you can’t ignore these things, and depending on the nature of
your system, you may have to consider them very deeply. However, these are abstractions that will
inevitably leak. If the network is down, your software will be affected, eventually.

In general, in my designs, I aim to abstract the interface between the accidental complexity realm
and the essential complexity (problem domain) realm as far as I can. This does take a bit of good
design thinking and a bit of thinking like an engineer.

The starting question is, how do I represent the accidental-complexity world in the essential com-
plexity domain? What does the logic of my system need to know about the computer it is running
on? We should be striving to make that knowledge minimal.

Listing 12.1 shows the three examples of cohesion from Chapter 10. If we look at these from the
perspective of abstraction and the separation of accidental and essential complexity, we can gain
more insight.

Listing 12.1 Three Cohesion Examples (Again)

def add_to_cart1(self, item):
 self.cart.add(item)

 conn = sqlite3.connect('my_db.sqlite')
 cur = conn.cursor()
 cur.execute('INSERT INTO cart (name, price) values (item.name, item.price)')
 conn.commit()
 conn.close()

 return self.calculate_cart_total();

def add_to_cart2(self, item):
 self.cart.add(item)
 self.store.store_item(item)

 return self.calculate_cart_total();

def add_to_cart3(self, item, listener):
 self.cart.add(item)
 listener.on_item_added(self, item)

9780137314911_print.indb 166 06/10/21 5:26 PM

ptg36503484

167Abstrac t Accidental Complexit y

The first example, add_to_cart1, doesn’t abstract at all and is a bit of a mess as a result.

The next, add_to_cart2, is better. We have added an abstraction for storing information. We have
created a “seam” in our code called store, and this allows the code to be more cohesive, drawing
a clean line in the separation of concerns between the essential functions of our domain, adding
items to carts, and calculating totals and the accidental complexity caused by the fact that our
computer makes a distinction between volatile but quick RAM and slower but nonvolatile disk.

Finally, in add_to_cart3, we have an abstraction that leaves our essential complexity code
uncompromised. Our abstraction is intact, with the very slight concession of the introduction of the
idea of something that is interested in what happened, a Listener.

In terms of the consistency of the abstraction, add_to_cart3 is, to my mind, the best. Even the
concept of storage has been removed.

The beauty of this abstraction is how clean the model is of accidental concerns and, as a result, how
easy it would be to test it or to enhance this code with new behavior on_item_added.

The cost to this abstraction, the leak that may get in the way of add_to_cart3 being the best
choice, raises the question, what happens if the attempt to store fails? What happens if our database
runs out of connections in the connection pool or our disk runs out of space or the network cable
between our code and the database is dug up by accident?

The first example is not modular, it lacks cohesion, it conflates accidental and essential complexity,
and there is no separation of concerns; this is still just bad code!

The other two are better, not for any artificial notion of beauty or elegance but for practical,
pragmatic reasons.

Versions 2 and 3 are more flexible, less coupled, more modular, and more cohesive because of
the separation of concerns and because of the abstractions that we have chosen. The choice of
abstraction between these two is really a design choice that should be driven by the context in
which this code exists.

We could imagine several ways that this could work.

If, for example, the lack of storage is transactional with the addition of the item to the cart, then
we’d need to undo the change to the cart. This is unpleasant, because the technicalities of the
storage are intruding into our previously pure abstraction. Perhaps we could work to limit the
extent of the leak; take a look at Listing 12.2.

Listing 12.2 Reducing the Abstraction Leak

def add_to_cart2(self, item):
 if (self.store.store_item(item))
 self.cart.add(item)

 return self.calculate_cart_total();

9780137314911_print.indb 167 06/10/21 5:26 PM

ptg36503484

168 Chapter 12 I nformation H iding and Abstrac t ion

In Listing 12.2, we stepped back from our fully abstracted version 3 and allowed the concept of
“storage” to exist in our abstraction. We have represented the transactional nature of the relation-
ship between storing and adding the item to the cart with a success or failure return value. Note we
aren’t confusing our abstraction by returning implementation-specific error codes and leaking those
into our domain-level abstraction. We have limited the technical nature of the failure to a Boolean
return value. This means that the problems of capturing and reporting the errors are dealt with
somewhere else, inside our implementation of “storage” in this case perhaps.

This is a further example of us trying to minimize the impact of the inevitable leaks in our abstrac-
tion. We are modeling the failure cases and abstracting them, too. Now we can once again imagine
all kinds of implementation of “store.” Our code is more flexible as a result.

Alternatively, we could take a more relaxed, decoupled view. In add_to_cart3 in Listing 12.1, we
could imagine that behind the event on_item_added there are some “guarantees.”11 Let’s imagine
that if, for some reason on_item_added fails, it will be retried until it works. (In reality we’d want to
be smarter than that, but for the sake of keeping my example simple, let’s stick to that!)

Now we are sure that, at some point in the future, the “store” or anything else that is responding to
on_item_added will be updated.

This certainly adds complexity to the communication underneath on_item_added, but it more
strongly preserves our abstraction and, depending on context, may be worth the extra complexity.

My objective with these examples is not to exhaustively explore all the options but rather to
demonstrate some of the engineering trade-offs that we may choose to make, depending on the
context of our system.

The “thinking like an engineer” that I alluded to, and ideally demonstrated here, is in thinking about
the ways in which things can go wrong. You may recall that Margaret Hamilton described this as a
cornerstone of her approach when she invented the term software engineering.

In this example, we imagined what would happen if the storage failed. We found that in that
situation our abstraction leaked. So we were forced to think a bit more and thought of a couple of
different ways that we could cope with that leak.

Isolate Third-Party Systems and Code
The other clear difference between version 1 of add_to_store and versions 2 and 3 is that version
1 exposes and couples our code to specific third-party code, in this case sqlite3. This is a common
library in the Python world, but even so, our code is now concretely tied to this specific third-party
library. Yet another reason for this code being the worst of the three is because of this coupling to
this third-party code.

11. Computer scientists will, quite correctly, tell you that it is impossible to offer “guaranteed delivery.”
What they mean is that you can’t guarantee “exactly once delivery,” but we can work with that.
See https://bit.ly/3ckjiwL.

9780137314911_print.indb 168 06/10/21 5:26 PM

https://bit.ly/3ckjiwL

ptg36503484

169Always Prefer to H ide I nformation

The tiny, insubstantial cost of cutting out the block of code that talks about sqlite3, connections,
and insert clauses, and moving it to somewhere else, away from my code that doesn’t care about
any of that stuff, is a big step forward toward greater generality. It’s a big gain for so little work.

As soon as we allow third-party code into our code, we are coupled to it. In general, my preference
and advice is to always insulate your code from third-party code with your own abstractions.

Some caveats before we proceed with this idea. Obviously, your programming language and its
common supporting libraries are “third-party code,” too. I am not suggesting that you write your
own wrapper for Strings or Lists, so as usual my advice is a guideline rather than a hard-and-fast
rule. However, I advise that you think carefully about what you allow “inside” your code. My default
position is that I will allow language concepts and libraries that are standard, but not any third-party
libraries that don’t come with my language.

Any third-party libraries that I use will be accessed through my own facade or adapter that will
abstract, and so simplify, my interface to it and provide a usually pretty simple layer of insulation
between my code and the code in the library. For this reason I tend to be wary of all-encompassing
frameworks that try to impose their programming model on me.

This may sound a little extreme, and it may be extreme, but this approach means that as a result my
systems are more composable and more flexible.

Even in the trivial example we have been looking at here, add_to_cart2 presents an abstraction
that makes sense in the context of my implementation of storage. I can provide a version that is in
essence the block of code implementing storage in sqlite3 from add_to_store1, but I can also
write a completely different kind of store, without needing to modify the add_to_cart2 implemen-
tation in any way. I could use the same code in different scenarios, and I could even write some kind
of composite version of store that stored my items in multiple places if the need arose.

Finally, we can test our code to this abstraction, which will always be a simpler version than the real
thing. As a result, my solution will be dramatically more flexible, and easier to change if I make a
mistake, for very little extra work.

Always Prefer to Hide Information
Another strong guideline to help us steer our code in a direction that will keep the doors to future-
change open, without breaking YAGNI, is to prefer the more general representations rather than
more specific, but this is slightly overly simplistic advice. The clearest demonstration of this idea is
probably through functions and method signatures.

Listing 12.3 shows three versions of a function signature. One of these looks a lot better to me than
the others, though as usual, it is contextual.

9780137314911_print.indb 169 06/10/21 5:26 PM

ptg36503484

170 Chapter 12 I nformation H iding and Abstrac t ion

Listing 12.3 Prefer to Hide Information

public ArrayList<String> doSomething1(HashMap<String, String> map);

public List<Sting> doSomething2(Map<String, String> map);

public Object doSomething3(Object map);

The first is overly specific. When I collect the return value, do I really ever care that it is an ArrayList
rather than any other kind of List? I suppose that I can imagine vanishingly rare cases when I care,
but in general I’d prefer not to care. The stuff I am almost certainly interested in is the List-yness, not
the ArrayList-yness!

“OK,” I hear you cry. “So always prefer the most abstract, most generic, representation.” Well, yes,
but within sensible bounds that maintain your abstraction. I would be dumb to follow this advice
and create the rather unpleasant function signature of version doSomething3. This is generic to
the point of being probably unhelpful. Again, there may be times when Object is the correct level
of abstraction, but those are, or should be, rare and always in the realm of accidental, rather than
essential, complexity.

So, in general, doSomething2 is probably my most common target. I am abstract enough that I am
not too tied to the technical specificity of doSomething1, yet I am also specific enough to be helpful
in presenting and maintaining some pointers about how to consume the information that I produce
and my expectations for the information that I consume.

I am sure that you will be tired of me repeating this by now, but once again, our ability to identify a
sweet spot for our abstractions is enhanced by designing for testability. Attempting to write a test
and simulating the use of the interface that we are creating gives us an opportunity to experience
and exercise our understanding of that interface to the code under test.

This, in combination with our preference to hide information in general and to prefer the more
generic representations of the information that we deal with that make sense in our context will,
once again, help us keep the doors to future change open.

Summary
Abstraction is at the heart of software development. It is a vital skill to develop for the aspiring
software engineer. Most of my examples are probably rather object oriented, which is because that
is how I tend to think about code. However, this is just as true of functional programmer or even
assembler programming. Our code, whatever its nature, is better when we construct seams in it that
hide information.

9780137314911_print.indb 170 06/10/21 5:26 PM

ptg36503484

171

Managing Coupling
Coupling is one of the most important ideas to think about when we start to think about how to
manage complexity.

Coupling is defined as “the degree of interdependence between software modules; a measure of
how closely connected two routines or modules are; the strength of the relationships between
modules.”1

Coupling is an essential part of any system, and in software we are often lax in discussing it. We
often talk about the value of more loosely coupled systems, but let’s be clear: if the components of
your software system are perfectly decoupled, then they can’t communicate with one another. This
may, or may not, be helpful.

Coupling is not something that we can, or should, aim to always wholly eliminate.

Cost of Coupling
However, coupling is the thing that impacts most directly on our ability to reliably, repeatably, and
sustainably create and deliver software. Managing the coupling in our systems, and in the organiza-
tions that create them, is front and center in our ability to create software at any kind of scale or
complexity.

The real reason why attributes of our systems like modularity and cohesion and techniques like
abstraction and separation of concerns matter is because they help us reduce the coupling

1. Source: Wikipedia, https://en.wikipedia.org/wiki/Coupling_(computer_programming)

13

9780137314911_print.indb 171 06/10/21 5:26 PM

https://en.wikipedia.org/wiki/Coupling_(computer_programming)

ptg36503484

172 Chapter 13 Managing Coupl ing

in our systems. This reduction has a direct impact on the speed and efficiency with which we can
make progress and on the scalability and reliability of both our software and our organizations.

If we don’t take the issues and costs of coupling seriously, then we create big balls of mud in soft-
ware, and we create organizations that find it impossible to make or release any change into pro-
duction. Coupling is a big deal!

In the previous chapter, we explored how abstraction could help us break some of the chains that
bind even tiny pieces of software together. If we decide not to abstract, then our code is tightly
coupled, forcing us to worry about changes in one part of the system and compromising the
behavior of code in another.

If we don’t separate the concerns of essential and accidental complexity, then our code is tightly
coupled and now we must worry about sometimes horribly complex ideas like concurrency,
while also being comfortable that our account balance adds up correctly. This is not a nice way
to work!

This does not mean that tight coupling is bad and loose coupling is good; I am afraid it is not that
simple.

In general, though, by far the most common way for developers and teams to make a big mistake is
in the direction of overly tight coupling. There are costs to “too loose coupling,” but they are gener-
ally much lower costs than the costs of “too tight coupling.” So, in general, we should aim to prefer
looser coupling over tighter coupling, but also to understand the trade-offs that we make when
we make that choice.

Scaling Up
Perhaps the biggest commercial impact of coupling is on our ability to scale up development. The
message may not have reached everyone that it should yet, but we learned a long time ago that
you don’t get better software faster by throwing people at the problem. There is a fairly serious limit
on the size of a software development team, before adding more people slows it down (refer to
Chapter 6).

The reason for this is coupling. If your team and my team are developmentally coupled, we could
maybe work to coordinate our releases. We could imagine tracking changes, and each time I change
my code, you are informed of it in some way. That may work for a very small number of people and
teams, but it quickly gets out of hand. The overhead of keeping everyone in step rapidly spirals out
of control.

There are ways in which we can minimize this overhead and make this coordination as efficient as
possible. The best way to do this is through continuous integration. We will keep all our code in a
shared space, a repository, and each time any of us changes anything, we will check that everything
is still working. This is important for any group of people working together; even small groups of
people benefit from the clarity that continuous integration brings.

9780137314911_print.indb 172 06/10/21 5:26 PM

ptg36503484

173M icroser vices

This approach also scales significantly better than nearly everyone expects. For example, Google
and Facebook do this for nearly all of their code. The downside of scaling up in this way is that you
have to invest heavily in the engineering around repositories, builds, CI, and automated testing to
get feedback on changes quickly enough to steer development activities. Most organizations are
unable or unwilling to invest enough in the changes necessary to make this work.2

You can think of this strategy as coping with the symptoms of coupling. We make the feedback
so fast and so efficient that even when our code, and our teams, are coupled, we can still make
efficient progress.

Microservices
The other strategy that makes sense is to decouple or at least reduce the level of coupling. This is
the microservices approach. Microservices are the most scalable way to build software, but they
aren’t what most people think they are. The microservice approach is considerably more complex
than it looks and requires a fair degree of design sophistication to achieve.

As you may have gathered from this book, I am a believer in the service model for organizing our
systems. It is an effective tool for drawing lines around modules and making concrete the seams
of abstraction that we discussed in the previous chapter. It is important to recognize, though, that
these advantages are true, independently of how you choose to deploy your software. They also
predate, by several decades, the idea of microservices.

The term microservices was first used in 2011. There was nothing new in microservices. All of the
practices and approaches had been used, and often widely used before, but the microservice
approach put them together and used a collection of these ideas to define what a microservice was.
There are a few different definitions, but this is the list that I use.

 Microservices are as follows:

• Small

• Focused on one task

• Aligned with a bounded context

• Autonomous

• Independently deployable

• Loosely coupled

I am sure that you can see that this definition closely aligns with the way that I describe good
software design.

2. My other book Continuous Delivery describes the practices that are necessary to scale up these aspects of
software engineering. See https://amzn.to/2WxRYmx.

9780137314911_print.indb 173 06/10/21 5:26 PM

https://amzn.to/2WxRYmx

ptg36503484

174 Chapter 13 Managing Coupl ing

The trickiest idea here is that the services are “independently deployable.” Independently deploy-
able components of software have been around for a long time in lots of different contexts, but
now they are part of the definition of an architectural style and a central part.

This is the key defining characteristic of microservices without this idea; they don’t introduce any-
thing new.

Service-based systems were using semantic messaging from at least the early 1990s, and all of the other
commonly listed characteristics of microservices were also in fairly common use by teams building
service-based systems. The real value in microservices is that we can build, test, and deploy them inde-
pendently of other services that they run alongside, and even of other services that they interact with.

Think what this means for a moment. If we can build a service and deploy it independently of
other services, that means we don’t care what version those other services are at. It means that we
don’t get to test our service with those other services prior to its release. This ability wins us the
freedom to focus on the now simple module in front of us: our service.

Our service will need to be cohesive so that it is not too dependent on other services or other code.
It needs to be very loosely coupled with respect to other services so that it, or they, can change
without either one breaking the other. If not, we won’t be able to deploy our service without testing
it with those other services before we release, so it isn’t independently deployable.

This independence, and its implications, are commonly missed by teams that think that they are
implementing a microservice approach but have not decoupled them sufficiently to trust that their
service can be deployed without testing it first with other the services that collaborate with it.

Microservices is an organizational-scaling pattern. That is its advantage. If you don’t need to scale up
development in your organization, you don’t need microservices (although “services” may be a great idea).

Microservices allow us to scale our development function by decoupling the services from one
another and vitally decoupling the teams that produce those services from one another.3

Now your team can make progress at its own pace, irrespective of how fast or slow my team is
moving. You don’t care what version my service is because your service is sufficiently loosely
coupled to allow you not to care.

There is a cost to this decoupling. The service itself needs to be designed to be more flexible
in the face of change with its collaborators. We need to adopt design strategies that insulate our
service from change in other places. We need to break developmental coupling so that we can
work independently of one another. This cost is the reason that microservice may be the wrong
choice if you don’t need to scale up your team.

Independent deployability comes at a cost, like everything else. The cost is that we need to design
our service to be better abstracted, better insulated, and more loosely coupled in its interactions
with other services. There are a variety of techniques that we can use to achieve this, but all of them
add to the complexity of our service and to the scale of the design challenge that we undertake.

3. In 1967, Mervin Conway created something called Conway’s law that said, “Any organization that designs a
system (defined broadly) will produce a design whose structure is a copy of the organization's communication
structure.”

9780137314911_print.indb 174 06/10/21 5:26 PM

ptg36503484

175Decoupl ing May Mean More Code

Decoupling May Mean More Code
Let’s try to pick some of these costs apart so that we can better understand them. As ever, there is a
cost to pay for the decisions that we make. That is the nature of engineering; it is always a game of
trade-offs. If we choose to decouple our code, we are almost certainly going to write more code, at
least to start with.

This is one of the common design mistakes that many programmers make. There is an assumption
that “less code is good” and “more code is bad,” but that is not always the case, and here is a key point
at which that is decidedly not the case. Let’s revisit once again the trivial example that we have used
in previous chapters. Listing 13.1 shows once again the code to add an item.

Listing 13.1 One Cohesion Example (Yet Again)

def add_to_cart1(self, item):
 self.cart.add(item)

 conn = sqlite3.connect('my_db.sqlite')
 cur = conn.cursor()
 cur.execute('INSERT INTO cart (name, price) values (item.name, item.price)')
 conn.commit()
 conn.close()

 return self.calculate_cart_total();

Here we have eight lines of code, if we ignore the blank lines. If we make this code better by abstracting
a method, I hope that we’d all agree that it is better, but we do need to add some more lines of code.

In Listing 13.2, the reduction in coupling, improved cohesion, and better separation of concerns has
cost us two additional lines of code. If we took the next step—of introducing a new module or class
that we passed as a parameter—we’d add several more lines to further improve our design.

Listing 13.2 Reducing Coupling

def add_to_cart1(self, item):
 self.cart.add(item)
 self.store_item(item)
 return self.calculate_cart_total();

def store_item(self, item):
 conn = sqlite3.connect('my_db.sqlite')
 cur = conn.cursor()
 cur.execute('INSERT INTO cart (name, price) values (item.name, item.price)')
 conn.commit()
 conn.close()

9780137314911_print.indb 175 06/10/21 5:26 PM

ptg36503484

176 Chapter 13 Managing Coupl ing

I have heard programmers reject the approach to design that I describe in this book, and I have
heard others reject the use of automated testing because “I have to type more.” These programmers
are optimizing for the wrong things.

Code is a means of communication, and it is primarily a means of communication to other human
beings, not to computers.

Our aim is to make our lives and the lives of other humans who interact with our code easier. This
means that the readability isn’t an effete, abstract property of code that is only meaningful for
people who nerd out about style and aesthetics. Readability is a fundamental property of good
code. It has a direct economic impact on the value of that code.

So taking care so that our code and systems are understandable is important. It’s more than that,
though. The idea that taking a dumb, naive approach to evaluating efficiency by counting the
characters that we type is ridiculous. The kind of unstructured, coupled code in Listing 13.1 may be
fewer lines of code if we are looking at eight lines. If this function was 800 lines, though, it is much
more likely that there will be duplication and redundancy. Managing the complexity of our code
is important for many reasons, but one of those reasons is that it significantly helps us in spotting
redundancy and duplication and removing it.

In real systems, we end up with less code by thinking carefully, designing well, and communicating
clearly through code, not by counting how many characters we type.

We should optimize for thinking, not for typing!

Loose Coupling Isn’t the Only Kind That Matters
Michael Nygard4 has an excellent model to describe coupling. He divides it into a series of
categories (see Table 13.1).

Table 13.1 The Nygard Model of Coupling

Type Effect

Operational A consumer can’t run without a provider

Developmental Changes in producers and consumers must be coordinated

Semantic Change together because of shared concepts

Functional Change together because of shared responsibility

Incidental Change together for no good reason (e.g., breaking API changes)

This is a useful model, and the design of our systems has an impact on all of these types of coupling.
If you can’t release your changes into production unless I am finished with mine, then we are devel-
opmentally coupled. We can address that coupling by the choices we make in our design.

4. Michael Nygard is a software architect and author of Release It. He presented his model of coupling at several
conferences in this excellent talk: https://bit.ly/3j2dGIP.

9780137314911_print.indb 176 06/10/21 5:26 PM

https://bit.ly/3j2dGIP

ptg36503484

177Prefer Loose Coupl ing

If my service can’t start unless yours is already running, then our services are operationally coupled,
and, once again, we can choose to address that through the design of our systems.

Recognizing these different kinds of coupling is a good step forward. Thinking about them and
deciding which to address and how to address them is another.

Prefer Loose Coupling
As we have seen, loose coupling comes at a cost, and the cost of more lines of code can also end up
being a cost in performance.

Coupling Can Be Too Loose

Many years ago I did some consultancy for a large finance company. They had a rather serious
performance problem with an important order-management system that they had built. I was
there to see if I could help them improve the performance of the system.

The architect responsible for the design was very proud of the fact that they had “followed best
practice.” His interpretation of “best practice” was to reduce coupling and increase abstraction,
both good things in my opinion, but one of the ways that the team had done this was to create
a completely abstract schema for their relational database. The team was proud of the fact that
they could store “anything” in their database.

What they had done was, in essence, create a “name-value pair” store mixed with a kind of cus-
tom “star schema” that used a relational database as the store. More than that, though, each
element in a “record” as far as their application was concerned was a separate record in the
database, along with links that allowed you to retrieve sibling records. This meant that it was
highly recursive.

The code was very general, very abstract, but if you wanted to load almost anything, it involved
hundreds, and sometimes thousands, of interactions with the database to pull the data out
before you could operate on it.

Too much abstraction and too much decoupling can be harmful!

It is important then to be aware of these potential costs and not take our abstraction and decou-
pling too far, but as I said earlier, the vastly more common failure is the inverse. Big balls of mud are
much more common than overly abstract, overly decoupled designs.

I spent the latter part of my career working in very high-performance systems, so I take perfor-
mance in design seriously. However, it is a common mistake to assume that high-performance code
is messy and can’t afford too many function or method calls. This is old-school thinking and should
be dismissed.

9780137314911_print.indb 177 06/10/21 5:26 PM

ptg36503484

178 Chapter 13 Managing Coupl ing

The route to high performance is simple, efficient code, and these days, for most common lan-
guages and platforms, it’s simple, efficient code that can be easily and, even better, predictably,
understood by our compilers and hardware. Performance is not an excuse for a big ball of mud!

Even so, I can accept the argument that within high-performance blocks of code, tread a little care-
fully with the level of decoupling.

The trick is to draw the seams of abstraction so that high-performance parts of the system fall on
one side of that line or another so that they are cohesive, accepting that the transition from one
service, or one module, to another will incur additional costs.

These interfaces between services prefer looser coupling to the extent that each service hides
details from another. These interfaces are more significant points in the design of your system and
should be treated with more care and allowed to come at a little higher cost in terms of runtime
overhead as well as lines of code. This is an acceptable trade-off and a valuable step toward more
modular, more flexible systems.

How Does This Differ from Separation of Concerns?
It may seem that loose coupling and separation of concerns are similar ideas, and they are
certainly related. However, it is perfectly reasonable to have two pieces of code that are tightly
coupled, but with a very good separation of concerns or loosely coupled with a poor separation of
concerns.

The first of these is easy to imagine. We could have a service that processes orders and service that
stores the orders. This is a good separation of concerns, but the information that we send between
them may be detailed and precise. It may require that both services change together. If one service
changes its concept of an “order,” it may break the other, so they are tightly coupled.

The second, loose coupled but with a poor separation of concerns, is probably a little more difficult
to imagine in a real system, though easy enough to think of in the abstract.

We could imagine two services that manage two separate accounts of some kind and one account
sending money to credit the other. Let’s imagine that our two accounts exchange information asyn-
chronously, via messages.

Account A sends message “Account A Debited by X, Credit Account B.” Sometime later, Account B
sees the message and credits itself with the funds. The transaction here is divided between the two
distinct services. What we want to happen is that money moves from one account to the other.
That is the behavior, but it is not cohesive; we are removing funds in one place and adding them in
another, even though there needs to be some sense of overall “transaction” going on here.

If we implemented this as I have described, it would be a very bad idea. It’s overly simplistic and
doomed to failure. If there was a problem in transmission somewhere, money could vanish.

9780137314911_print.indb 178 06/10/21 5:26 PM

ptg36503484

179DRY Is Too S impl ist ic

We’d definitely need to do more work than that. Establish some kind of protocol that checked that
the two ends of the transaction were in step perhaps. Then we could confirm that if the money was
removed from the first account, it certainly arrived in the second, but we could still imagine doing
this in a way that was loosely coupled, technically if not semantically.

DRY Is Too Simplistic
DRY is short for “Don’t Repeat Yourself.” It is a short hand description of our desire to have a single
canonical representation of each piece of behavior in our system. This is good advice, but it is not
always good advice. As ever, it is more complex than that.

DRY is excellent advice within the context of a single function, service, or module. It is good
advice; beyond that, I would extend DRY to the scope of a version control repository or a deploy-
ment pipeline. It comes at a cost, though. Sometimes this is a very significant cost when applied
between services or modules, particularly if they are developed independently.

The problem is that the cost of having one canonical representation of any given idea across a
whole system increases coupling, and the cost of coupling can exceed the cost of duplication.

This is a balancing act.

Dependency management is an insidious form of developmental coupling. If your service and my
service share the use of a library of some kind and you are forced to update your service when I
update mine, then our services and our teams are developmentally coupled.

This coupling will have a profound impact on our ability to work autonomously and to make prog-
ress on the things that matter to us. It may be a problem for you to hold your release until you have
changed to consume the new version of the library that my team imposed upon you. Or it may be a
pain because you were in the middle of some other piece of work that this change now makes more
difficult.

The advantage of DRY is that when something changes, we need to change it in only one place; the
disadvantage is that every place that uses that code is coupled in some way.

From an engineering standpoint, there are some tools that we can use to help us. The most impor-
tant one is the deployment pipeline.

In continuous delivery, a deployment pipeline is meant to give us clear, definitive feedback on the
releasability of our systems. If the pipeline says “everything looks good,” then we are safe to release
with no further work. That implicitly says something important about the scope of a deployment
pipeline; it should be “an independently deployable unit of software.”

So, if our pipeline says all is good, we can release; that gives us a sensible scope to use for DRY. DRY
should be the guiding principle within the scope of a deployment pipeline but should be actively
avoided between pipelines.

9780137314911_print.indb 179 06/10/21 5:26 PM

ptg36503484

180 Chapter 13 Managing Coupl ing

So if you are creating a microservice-based system, with each service being independently deploy-
able, and each service having its own deployment pipeline, you should not apply DRY between
microservices. Don’t share code between microservices.

This is interesting and sort of foundational to the thinking that prompted me to write this book. It
is not random chance or an accident that my advice on coupling is related to something that may
seem distant. Here is a line of reasoning that goes from a fairly basic idea in computer science, cou-
pling, and links it, through design and architecture, to something that is seemingly to do with how
we build and test our software: a deployment pipeline.

This is part of the engineering philosophy and approach that I am attempting to describe and
promote here.

If we follow a line of reasoning—from ideas like the importance of getting great feedback on our
work, creating efficient, effective approaches to learning as our work proceeds and dividing our
work into parts that allow us to deal with the complexity of the systems that we create, and the
human systems that allow us to create them–then we end up here.

By working so that our software is always in a releasable state, the core tenet of continuous delivery,
we are forced to consider deployability and the scope of our deployment pipelines. By optimizing
our approach so that we can learn quickly and fail fast if we make a mistake, which is the goal of the
first section of this book, then we are forced to address the testability of our systems. This guides us
to create code that is more modular, more cohesive, has better separation of concerns, and has bet-
ter lines of abstraction that keep change isolated and loosely coupled.

All of these ideas are linked. All reinforce one another, and if we take them seriously and adopt them
as the foundations for how we approach our work, they result in us creating better software faster.

Whatever software engineering is, if it doesn’t help us create better software faster, it doesn’t count
as “engineering.”

Async as a Tool for Loose Coupling
The previous chapter discussed the leakiness of abstractions. One of those leaky abstractions is the
idea of synchronous computing across process boundaries.

As soon as we establish such a boundary, whatever its nature, any idea of synchrony is an illusion,
and that illusion comes at a cost.

The leakiness of this abstraction is most dramatic when thinking about distributed computing. If
service A communicates with service B, consider all the places where this communication can fail if
a network separates them.

The illusion, the leaky abstraction, of synchrony can exist, but only to the point where one of
these failures happens—and they will happen. Figure 13.1 shows the places where a distributed
conversation can go wrong.

9780137314911_print.indb 180 06/10/21 5:26 PM

ptg36503484

181Async as a Tool for Loose Coupl ing

21 3 4

5

6789
‘A’ ‘B’

Figure 13.1
Failure points in synchronous communications

1. There may be a bug in A.

2. A may fail to establish a connection to the network.

3. The message may be lost in transmission.

4. B may fail to establish a connection to the network.

5. There may be a bug in B.

6. The connection to the network may fail before B can send a response.

7. The response may be lost in transmission.

8. A may lose the connection before it has the response.

9. There may be a bug in A’s handling of the response.

Apart from 1 and 9, each of the points of failure listed is a leak in the abstraction of synchronous
communications. Each adds to the complexity of dealing with errors. Nearly all of these errors could
leave A and B out of step with one another, further compounding the complexity. Only some of
these failures are detectable by the sender, A.

Now imagine that A and B are communicating about some business-level behavior as though this
conversation was synchronous. At the point that something like a connection problem or a dropped
message on the network happens, this technical failure intrudes into the business-level conversation.

This kind of leak can be mitigated significantly by more closely representing what is really going
on. Networks are really asynchronous communications devices; communication in the real world is
asynchronous.

If you and I converse, my brain doesn’t freeze awaiting a response after I have asked you a question;
it carries on doing other things. A better abstraction, closer to reality, will leak in less unpleasant
ways.

This is not really the place to go into too much detail of specific approaches to design, but I am a
believer in treating process boundaries as asynchronous and communicating between distributed
services and modules via only asynchronous events. For complex distributed systems, this approach
significantly reduces the impact of abstraction leaks and reduces the coupling to the underlying
accidental complexity that sits beneath our systems.

Imagine for a moment the impact of a reliable, asynchronous messaging system on the list of failure
points in Figure 13.1. All of the same failures can occur, but if Service A only sends asynchronous

ptg36503484

182 Chapter 13 Managing Coupl ing

messages, and some time later receives only a new async message, then now Service A doesn’t
need to worry about any of them after step 2. If a meteorite has hit the data center that contains
Service B, then we can rebuild the data center, redeploy a copy of Service B, and resubmit the mes-
sage that Service A sent originally. Although rather late, all the processing continues in precisely the
same way as though the whole conversation had taken only a few microseconds.

This chapter is about coupling, not asynchronous programming or design. My intent here is not to
convince you of the merits of asynchronous programming, though there are many, but rather to use
it as an example to show that by smart use of the ideas of reducing coupling, in this case between
the accidental complexity of networks and remote comms and the essential complexity of the busi-
ness functions of my services, then I can write one piece of code that works when the system is
working well and when it is not. This is a well-engineered answer to a particular class of problem.

Designing for Loose Coupling
Yet again, striving for testable code will provide a useful pressure on our design that encourages
us, if we pay attention, to design more loosely coupled systems. If our code is hard to test, it is
commonly as a result of some unfortunate degree of coupling.

So we can react to the feedback from our design and change it to reduce the coupling, make test-
ing easier, and end up with a higher-quality design. This ability to amplify the quality of our code
and designs is the minimum that I would expect of a genuine engineering approach for software.

Loose Coupling in Human Systems
I have grown to think of coupling, in general, as being at the heart of software development. It is
the thing that makes software difficult.

Most people can learn to write a simple program in a few hours. Human beings are extremely
good at languages, even weird, grammatically constrained, abstract things like a programming lan-
guages. That isn’t the problem. In fact, the ease with which most people can pick up a few concepts
that allows them to write a few lines of code is a different kind of problem altogether, in that it is
sufficiently simple to lull people into a false sense of their own capabilities.

Professional programming isn’t about translating instructions from a human language into a pro-
gramming language. Machines can do that.5 Professional programming is about creating solutions
to problems, and code is the tool that we use to capture our solutions.

5. GPT3 is a machine learning system trained on the Internet, all of it. Given instructions in English, it can code
simple apps. See https://bit.ly/3ugOpzQ.

9780137314911_print.indb 182 06/10/21 5:26 PM

https://bit.ly/3ugOpzQ

ptg36503484

183Loose Coupl ing in Human Systems

There are a lot of things to learn about when learning to code, but you can get started quickly and,
while working on easy problems on your own, make good progress. The hard part comes as the sys-
tems that we create, and the teams that we create them with, grow in size and complexity. That is
when coupling begins to have its effect.

As I have hinted, this is not just about the code, but vitally, it is about coupling in the organizations
that create it, too. Developmental coupling is a common, expensive problem in big organizations.

If we decide to solve this by integrating our work, then however we decide to deal with that, the
integration will come at a cost. My other book, Continuous Delivery, is fundamentally about strate-
gies to manage that coupling efficiently.

In my professional life, I see many large organizations hamstrung by organizational coupling. They
find it almost impossible to release any change into production, because over the years they have
ignored the costs of coupling, and now making the smallest change involves tens, or hundreds, of
people to coordinate their work.

There are only two strategies that make sense: you take either a coordinated approach or a distrib-
uted approach. Each comes with costs and benefits. This is, it seems, part of the nature of engineering.

Both approaches are, importantly, deeply affected by the efficiency with which we can gather
feedback, which is why continuous delivery is such an important concept. Continuous delivery is
built on the idea of optimizing the feedback loops in development to the extent that we have, in
essence, continuous feedback on the quality of our work.

If you want consistency across a large, complex piece of software, you should adopt the coordinated
approach. In this you store everything together, build everything together, test everything together,
and deploy everything together.

This gives you the clearest, most accurate picture but comes at the cost of your needing to be able
to do all of these things quickly and efficiently. I generally recommend that you strive to achieve
this kind of feedback multiple times per day. This can mean a significant investment in time, effort,
and technology to get feedback quickly enough.

This doesn’t prevent multiple teams from working on the system, nor does it imply that the systems
that the teams create this way are tightly coupled. Here we are talking about the scope of evalua-
tion for a production release. In this case, that scope is an entire system.

Where separate teams are working semi-independently, they coordinate their activities through the
shared codebase and a continuous delivery deployment pipeline for the whole system.

This approach allows for teams working on code, services, or modules that are more tightly coupled
to make good progress, with the minimum of costs in terms of feedback, but, I repeat, you have to
work hard to make it fast enough.

The distributed approach is currently more in favor; it is a microservices approach. In microservices
organizations, decision-making is intentionally distributed. Microservice teams work independently
of one another, each service is independently deployable, and there is no direct coordination cost
between teams. There is, though, an indirect cost, and that cost comes in terms of design.

9780137314911_print.indb 183 06/10/21 5:26 PM

ptg36503484

184 Chapter 13 Managing Coupl ing

To reduce organizational coupling, it is important to avoid the need to test services together later
in the process. If services are independently deployable, that means they are tested independently
too, since how can we judge deployability without testing? If we test two services together and find
out that version 4 of one works with version 6 of another, are we really then going to release version
4 and version 17 without testing them? So they aren’t independent.

A microservice approach is the most scalable strategy for software development. You can have as
many teams as you want, or at least as many as you can find people to populate and funds to pay
them.

The cost is that you give up on coordination, or at least reduce it to the simplest, most generic
terms. You can offer centralized guidance, but you can’t enforce it, because enforcement will incur
coordination costs.

Organizations that take microservices seriously consciously loosen control; in fact, a microservices
approach makes little or no sense in the absence of that loosening of control.

Both of these approaches—the only two that make any real sense—are all about different
strategies to manage the coupling between teams. You manage coupling by speeding up the
frequency with which you check for mistakes when coupling is high, or you don’t check at all,
at least prior to release, when coupling is low.

There are costs to this either way, but there is no real middle ground, though many organizations
mistakenly attempt to forge one.

Summary
Coupling is the monster at the heart of software development. Once the complexity of your soft-
ware extends beyond the trivial, then getting the coupling right, or at least working to manage
whatever level of coupling you have designed into it, is often the difference between success and
failure.

If your team and mine can make progress without needing to coordinate our activities, the “State of
DevOps” reports say that we are more likely to be supplying high-quality code more regularly.

We can achieve this in three ways. We can work with more coupled code and systems but through
continuous integration and continuous delivery get fast enough feedback to identify problems
quickly. We can design more decoupled systems that we can safely, with confidence, change with-
out forcing change on others. Or we can work with interfaces that have been agreed on and fixed so
that we never change them. These are really the only strategies available.

You ignore the costs of coupling, both in your software and in your organization, at your peril.

9780137314911_print.indb 184 06/10/21 5:26 PM

ptg36503484

IV
TOOLS TO SUPPORT ENGINEERING

IN SOFTWARE

9780137314911_print.indb 185 06/10/21 5:26 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

187

The Tools of an Engineering Discipline
When I think about what a genuine engineering discipline for software should mean, I don’t think
much in terms of specific tools, programming languages, processes, or diagramming techniques.
Rather, I think of outcomes.

Any approach worth the name of software engineering must be built around our need to learn, to
explore, and to experiment with ideas. Most importantly, if it doesn’t help us build better software
faster, it is “fashion” rather than engineering. Engineering is the stuff that works; if it doesn’t work,
we will change it until it does.

Although I may not be thinking of specific tools, that doesn’t mean there are none. This book is built
on the idea that there are some intellectual “tools” that we can apply universally to software devel-
opment that significantly improve our chances of building better software faster. All ideas are not
equal; there are some ideas that are simply bad, and we should be able to discard them.

In this chapter, I examine some ideas that I have spoken about throughout this book. These ideas
pull together everything else in the book. If you ignored everything else that I have written,
adopted only these ideas, and treated them as the founding principles on which you undertook
software development, then you would find that you got better results and that you would, over
time, discover all of the other ideas that I have written about here, because they follow as a logical
consequence.

14

9780137314911_print.indb 187 06/10/21 5:26 PM

ptg36503484

188 Chapter 14 The Tools of an Engineer ing Disc ipl ine

What Is Software Development?
Software development is certainly more than simply knowing the syntax and libraries associated
with a programming language. The ideas that we capture are in many ways more important than
the tools that we use to capture them. After all, we get paid to solve problems, not wield tools.

What does it mean to write software, for any purpose, if we don’t know if it works?

If we carefully examine the code that we wrote but never run it, then we are placing ourselves as
hostages to fortune. Humans just don’t work like that. Even for loosely interpreted languages like a
human spoken language, we make mistakes all the time. Have you ever written anything—an email,
perhaps—sent it without proofreading it, and then, only too late, spotted all the grammatical errors
or spelling mistakes?

My editors and I have worked very hard to eliminate mistakes in this book, but I am pretty sure that
you have found a few nonetheless. Humans are error-prone. We are particularly bad at checking
things over, because we often tend to see what we expect to see, rather than what is really there.
This is not a criticism of our laziness as much as a recognition of the limitations of our biology. We
are built to jump to conclusions, a very good trait for wild humans in hostile environments.

Software is intolerant of errors; proofreading and code review are not enough. We need to test it to
check that it works. That testing can take a variety of forms, but whether it is us informally running
the code and watching what happens or running it in a debugger to watch how things change or
running a battery of behavior-driven development (BDD) scenarios, it is all just us attempting to get
feedback on our changes.

As discussed in Chapter 5, feedback needs to be fast and efficient to be valuable.

If we must test it then, the only question now is, how should we do that as efficiently and effectively
as possible?

We could decide to wait until we think that we are finished with our work and then test everything
together. Maybe we could just release our software into production and let our users test it for us
for free? That’s not the most likely route to success! There is a commercial cost to low-quality work;
this is why taking an engineering approach to software development matters.

Instead of crossing our fingers and hoping that our code works, we should probably do some form
of evaluation before we release changes into production. There are a few different ways that we
could organize that.

If we wait until we think we are finished, we are clearly not getting high-quality, timely feedback.
We will probably forget all the little nuances of what we did, so our testing will be somewhat cur-
sory. It is also going to be quite the chore.

At this point, many organizations decide to hire people to do that chore for us. Now we are back to
square one, hostages to fortune, guessing that our software will probably work and relying on
others to tell us that it didn’t. This is certainly a step forward compared to waiting to hear the wails
of our users in production, but it is still a low-quality outcome.

9780137314911_print.indb 188 06/10/21 5:26 PM

ptg36503484

189Testabi l i t y as a Tool

Adding separate steps into the process, in the form of separate groups of people, does not improve
the speed or quality of the feedback that we can collect. This is not criticism of the people involved;
all people are too slow, too variable in what they do, and too expensive to rival an automated
approach to gathering the feedback that we need.

We are also going to receive this feedback too late and have no idea of how good or bad our soft-
ware is while we are developing it. This means we will miss out on the valuable learning opportuni-
ties that we could have benefited from if the feedback had been more timely. Instead, we wait until
we think that we are finished and then get low-quality, slow feedback from people, however skilled
and however diligent they are, who don’t know the inner workings of a system that wasn’t designed
with testing in mind.

I suppose that it is possible that we may end up being pleasantly surprised at the quality of our soft-
ware, but I suspect that it is much more likely that we will be shocked by the dumb errors that we
left in. Remember, we have done no other testing, not even run it until now.

I am sure you can tell that I don’t think this is anywhere close to good enough.

This is a bad idea, so we must build some kind of checks into our process before we get this far. This
is much too late to find out that users can’t log in and that our cool new feature actually corrupts
the disk.

So if we must do some testing, let’s be smart about it. How can we organize our work in a way that
minimizes the amount of work that we need to do and maximizes the insight that we can gain as
we proceed?

In Part II, we talked about optimizing for learning, so what is it that we wish to learn, and what is the
most efficient, effective way to do it?

There are four categories of learning relevant at the point where we are about to write some code:

• “Are we solving the right problem?”

• “Does our solution work as we think?”

• “What is the quality of our work?”

• “Are we working efficiently?”

These are certainly complex questions to answer, but fundamentally that is all we are interested in
when we develop software.

Testability as a Tool
If we are going to test our software, then it makes sense that, to make our lives easier, we should
make our software easy to test. I already described (in Chapter 11) how separation of concerns and
dependency injection can make our code more testable. In fact, it is hard to imagine code that is
testable that is not also modular, is cohesive, has a good separation of concerns, and exhibits
information hiding. If it does all these things, then it will inevitably be appropriately coupled.

9780137314911_print.indb 189 06/10/21 5:26 PM

ptg36503484

190 Chapter 14 The Tools of an Engineer ing Disc ipl ine

Let’s look at a simple example of the impact of making our code more testable. In this example, I
am not going to do anything other than follow the line of reasoning that I want to be able to test
something. Listing 14.1 shows a simple Car class.

Listing 14.1 Simple Car Example

 public class Car {
 private final Engine engine = new PetrolEngine();

 public void start() {
 putIntoPark();
 applyBrakes();
 this.engine.start();
 }

 private void applyBrakes() {
 }

 private void putIntoPark() {
 }
}

This class has an engine, a PetrolEngine. When you “start the car,” it does a few things. The engine
puts the Car into park, applies the brakes, and starts the Engine. That looks OK; lots of people
would write code that looks something like this.

Now let’s test it, as shown in Listing 14.2.

Listing 14.2 Test for a Simple Car

@Test
public void shouldStartCarEngine() {
 Car car = new Car();
 car.start();
 // Nothing to assert!!
}

Immediately, we run into a problem. Unless we decide to break the encapsulation of our car and
make the private field engine public, or provide some other nasty, backdoor hack that allows our
test to read a private variable (both of which are terrible ideas by the way), then we can’t test the
Car! This code is simply not testable because we can’t see the effect of “starting the car.”

The problem here is that we have hit some kind of endpoint. Our last point of access to the Car is to
call the start method. After that, the internal workings are invisible to us. If we want to test the Car,

9780137314911_print.indb 190 06/10/21 5:26 PM

ptg36503484

191Testabi l i t y as a Tool

we need to allow access in some way that isn’t just a special case for testing. We’d like to be able to
see the engine.

We can address that, in this case, by adding a measurement point through dependency injection.
Here is an example of a better car; in this example, instead of hiding the Engine, we will pass the
BetterCar an Engine that we’d like it to use. Listing 14.3 shows the BetterCar, and Listing 14.4
shows its test.

Listing 14.3 BetterCar

public class BetterCar {
 private final Engine engine;

 public BetterCar(Engine engine) {
 this.engine = engine;
 }

 public void start() {
 putIntoPark();
 applyBrakes();
 this.engine.start();
 }

 private void applyBrakes() {
 }

 private void putIntoPark() {
 }

Listing 14.3 injects an Engine. This simple step completely changes the coupling with the
PetrolEngine; now our class is more abstract because it deals in terms of Engine instead of
PetrolEngine. It has improved the separation of concerns and cohesion because now the
BetterCar is no longer interested in how to create a PetrolEngine.

In Listing 14.4, we see the test for the BetterCar.

Listing 14.4 Test for a BetterCar

@Test
public void shouldStartBetterCarEngine() {
 FakeEngine engine = new FakeEngine();
 BetterCar car = new BetterCar(engine);
 car.start();
 assertTrue(engine.startedSuccessfully());
}

9780137314911_print.indb 191 06/10/21 5:26 PM

ptg36503484

192 Chapter 14 The Tools of an Engineer ing Disc ipl ine

This BetterCarTest uses a FakeEngine, shown for completeness in Listing 14.5.

Listing 14.5 FakeEngine to Help Test a BetterCar

public class FakeEngine implements Engine {
 private boolean started = false;

 @Override
 public void start() {
 started = true;
 }

 public boolean startedSuccessfully() {
 return started;
 }
}

The FakeEngine does nothing except record that start was called.1

This simple change made our code testable and, as we have seen, better. However, as well as the
perhaps seemingly abstract attributes of quality, such as modularity and cohesion, it is better in a
simpler, more practical way.

Because we made our code testable, it is now more flexible. Creating a BetterCar with a
PetrolEngine is simple, but so is creating a BetterCar with an ElectricEngine or a FakeEngine
or even, if we are a bit crazy, a JetEngine. Our BetterCar is better code, and it is better code
because we focused on making it easier to test.

Designing to improve the testability of our code makes us design higher quality code. It is, of
course, no panacea. If you are bad at coding, your coding may still be bad, but it will be better than
you’d normally achieve if you work to make it testable. If you are great at coding, your code will be
greater because you made it testable.

Measurement Points
The FakeEngine in our example demonstrates another important idea: measurement points. If
we want our code to be testable, we need to be able to control the variables. We want to be able to
inject precisely the information that we need and only that information. To get our software into a
state where we can test it, we invoke some behavior, and then we need the results to be visible and
measurable.

1. In a real test, we’d choose to use a Mocking library rather than write this code ourselves. I included the
FakeEngine code here to make the example clear.

9780137314911_print.indb 192 06/10/21 5:26 PM

ptg36503484

193Problems with Achieving Testabi l i t y

This is really what I mean when I say “design for testability.” We are going to design our systems so
that there are many measurement points, places where we can examine the behavior of our system
without compromising its integrity. These measurement points will take different forms, depending
on the nature of the component and the level at which we are thinking about testability.

For fine-grained testing, we will rely on parameters and return values from functions or methods,
but we will also use dependency injection, as demonstrated in Listing 14.4.

For larger-scale, system-level testing, we will fake external dependencies so that we can insert our
measurement point probes into the system allowing us to inject test inputs or collect test outputs,
as I described in Chapter 9.

Problems with Achieving Testability
Many teams struggle to achieve the kind of testability that I am describing here, and there are two
primary reasons for that. One is a technical difficulty; the other is a more cultural problem.

As we have already explored, any form of testing needs us to have access to some sensible measure-
ment points. This is fine for most of our code. With techniques like dependency injection and good
modular design, we can organize our code to be testable, but this becomes difficult at the edges of
our system, the points at which our system interacts in some way with the real world (or at least a
close computer facsimile of it).

If we write code that writes to disk, draws on a screen, or controls or reacts to some other hardware
device, then that edge of the system is difficult to test, because how do we inject some test code to
either inject test data or collect test results?

The obvious answer to this problem is to design our systems so that these “edges” in our code are
pushed to the margins and minimized in their complexity. This is really about reducing the coupling
of the bulk of the system with respect to these edges. This, in turn, reduces our dependence on
third-party software elements and leaves our code more flexible, for little extra work.

We create some suitable abstraction that represents our interaction at this edge, write tests that
evaluate the interaction of our system to a fake version of this abstraction, and then write some
simple code to translate the abstraction into a real interaction with the edge technology. That is a
lengthy way of saying that we add a level of indirection.

Listing 14.6 shows a simple example of some code that needs to display something. We could
create a robot with a camera to record the output on a screen of some kind, but that would be
overkill. Instead, we abstract the act of showing some result by injecting a piece of my code that
provides the ability to “display” some text.

9780137314911_print.indb 193 06/10/21 5:26 PM

ptg36503484

194 Chapter 14 The Tools of an Engineer ing Disc ipl ine

Listing 14.6 Stuff to Display

public interface Display
{
 void show(String stringToDisplay);
}

public class MyClassWithStuffToDisplay
{
 private final Display display;

 public MyClassWithStuffToDisplay(Display display)
 {
 this.display = display;
 }

 public void showStuff(String stuff)
 {
 display.show(stuff);
 }
}

By abstracting the act of displaying information, I have gained the nice side effect that my class with
stuff to display is now decoupled from any actual display device, at least outside of the bounds of
the abstraction that I have provided. Obviously, this also means that now we can test this code in
the absence of a real Display. I have included an example of such a test in Listing 14.7.

Listing 14.7 Testing Stuff to Display

@Test
public void shouldDisplayOutput() throws Exception
{
 Display display = mock(Display.class);
 MyClassWithStuffToDisplay displayable = new MyClassWithStuffToDisplay(display);

 displayable.showStuff("My stuff");

 verify(display).show(eq("My stuff"));
}

Finally, we can create a concrete implementation of Display. In this simple case shown in Listing 14.8,
it’s a ConsoleDisplay, but we could imagine replacing this with all kinds of different options if the
need arose, such as LaserDisplayBoard, MindImprintDisplay, 3DGameEngineDisplay, and so on.

9780137314911_print.indb 194 06/10/21 5:26 PM

ptg36503484

195Problems with Achieving Testabi l i t y

Listing 14.8 Displaying Stuff

public class ConsoleDisplay implements Display
{
 @Override
 public void show(String stringToDisplay)
 {
 System.out.println(stringToDisplay);
 }
}

Listings 14.5 to 14.8 are trivial, and the abstraction would clearly need to be more complex if the
technology that we are interacting with at this edge was more complex, but the principle remains.

Testing at the Edges

On one project that I worked on, we abstracted the web DOM in this way in order to make our
web page logic unit testable.

There are better options now, but at the time it was tricky to unit test web applications in the
absence of a real browser. We didn’t want to slow down our testing by having to start up a
browser instance for each test case, so we changed how we wrote our UI.

We wrote a library of UI components that “sat in front of the DOM” (Ports & Adapters for the
DOM), so if we needed a table, we created a JavaScript Table via our own DOM factory. At
runtime, that gave us a thin facade object that gave us a table we could use. At test time,
it gave us a stub we could test against but didn’t require the presence of a real browser
or DOM.

You can always do this. It is really only a matter of how easy, or difficult, the tech that you are trying
to abstract is and the degree to which you think this is important enough to expend the effort.

For these “edges of the system,” it is nearly always worth the effort. Sometimes, in a web UI or
mobile app testing, for example, other people may have done the work for you, but this is how to
unit test to the edges.

The problem with this approach, and any approach to solving this problem really, is cultural. If we
take testability seriously and adopt it in our approach to design from the outset, this is all pretty
easy.

It gets much more difficult when we hit code that wasn’t built with testability in mind, or people
don’t think it’s important. This clash of cultures is a tough problem.

The code is probably the easier part of the problem to deal with, though easier does not necessarily
mean “easy.” We can always add our own abstractions, even if they are leaky ones, and make it easier

9780137314911_print.indb 195 06/10/21 5:26 PM

ptg36503484

196 Chapter 14 The Tools of an Engineer ing Disc ipl ine

to test. If we really must, we can include the intransigent “edge” code within the scope of our test.
This is an unpleasant compromise, but it’s workable in some circumstances.

The difficult problem is people. I am not arrogant enough to state that there has never been a team
that has practiced true TDD, in the sense of “Write a test before you write the code-driven develop-
ment,” and found it didn’t work, but I have never met one.

I have met lots of teams that have told me that “We tried TDD, and it didn’t work,” but what all of the
groups that I have met meant when they said that was that they had tried writing unit tests after
they had written the code. This is not the same thing by a long margin.

The difference is that TDD encourages the design of testable code and unit testing does not. Unit
testing, after the code is written, encourages us to cut corners, break encapsulation, and tightly
couple our test to the code that we already wrote.

TDD is essential as a cornerstone for an engineering approach to software development. I don’t
know of any other practice that is as effective at encouraging and amplifying our ability to create
good design in line with the ideas in this book.

The strongest argument against TDD that I sometimes hear is that it compromises the quality of
design and limits our ability to change code, because the tests are coupled to the code. I have sim-
ply never seen this in a codebase created with “test-first TDD.” It is common—I’d say inevitable—as
a result of “test-after unit testing,” though. So my suspicion is that when people say “TDD doesn’t
work,” what they really mean is that they haven’t really tried TDD, and while I am sure that this
is probably not true in all cases, I am equally certain that it is true in the majority and so a good
approximation for truth.

The criticism on the quality of design is particularly close to my heart because, as I suspect you can
see from this book, I care very much about the quality of design.

I would be disingenuous if I pretended that I don’t have some skill at software development, soft-
ware design, and TDD. I am pretty good at it, and I can only guess at the reasons why. I am experi-
enced, sure. I probably have some natural talent, but much more importantly than all these things,
I have some good habits that keep me out of trouble. TDD gives me clearer feedback on the quality
of my design as it evolves than anything else that I am aware of and is a cornerstone of the way that
I work and recommend others to work.

How to Improve Testability
Part II describes the importance of optimizing for learning. I don’t mean this in some grandiose, aca-
demic sense. I mean it in the fine-grained, practical sense of everyday engineering. So we will work
iteratively, adding a test for the piece of work in front of us. We want fast, efficient, clear feedback
from our test so that we can learn quickly, on tiny timescales, every few minutes that our code is
doing exactly what we expect.

9780137314911_print.indb 196 06/10/21 5:26 PM

ptg36503484

197Deployabi l i t y

To do that, we want to compartmentalize our system so that we can clearly see what that feedback
means. We will work incrementally on small, separate pieces of code, limiting the scope of our eval-
uations so that it is clear what is happening as we proceed.

We can work experimentally, structuring each test case as a small experiment that predicts and veri-
fies the behavior that we want of our code. We write a test to capture that hypothesis of how the
software should behave. We predict how the test will fail before we run it so that we can verify that
our test is in fact testing what we expect it to. Then we can create code that makes the test pass and
use the stable, passing combination of code and test as a platform to review our design and make
small, safe, behavior-preserving changes to optimize the quality of our code and our tests.

This approach gives us deep insight into our design as it progresses in a much more profound sense
than merely “does it pass a test?” If we pay attention, the testability of our code guides us in the
direction of a higher-quality outcome.

We don’t have enough tools that do this kind of thing for us, and we ignore this one at our peril. Too
many developers and development teams ignore this and produce worse software, more slowly,
than they could and should.

If the test before you is difficult to write, the design of the code that you are working with is poor
and needs to be improved.

The testability of our system is fractal. We can observe it and use it as a tool, at both the level of
whole enterprise systems and at the narrow focus of a few lines of code, but it is one of the most
powerful tools in our tool chest.

At the fine-grained level of functions and classes, the most important aspect of testability to focus
on is the measurement points. They define the ease with which we can establish our code in a
particular state and the ease with which we can observe and evaluate the results of its behavior.

At a more systemic and multisystemic level, the focus is more on the scope of evaluation and
testing. The fundamentals of measurement points still matter, but the scope of evaluation is an
important tool.

Deployability
In my book Continuous Delivery, we described an approach to development based on the idea of
working so that our software is always in a releasable state. After each small change, we evaluate
our software to determine its releasability, and we gain that feedback multiple times per day.

To achieve this, we employ a mechanism called a deployment pipeline. The deployment pipeline is
intended to determine releasability, as far as practical, through high levels of automation.

So what does “releasable” mean? Inevitably that is somewhat contextual.

We’d certainly need to know that the code did what the developers thought it did, and then it
would be good to know that it did what the users needed it to do. After that, we’d like to know if

9780137314911_print.indb 197 06/10/21 5:26 PM

ptg36503484

198 Chapter 14 The Tools of an Engineer ing Disc ipl ine

the software was fast enough, secure enough, resilient enough, and maybe compliant with any
applicable regulations.

These are all tasks for a deployment pipeline. So far I have described the deployment pipeline
in terms of releasability, but there is a small nuance that I want to get out of the way before we
move on.

Actually, when describing deployment pipelines, I make a distinction between releasable and
deployable. It is a subtle point, but from a development perspective, I want to separate the idea of
being “ready to deploy a change into production” from “releasing a feature to users.”

In continuous delivery we want the freedom to create new features over a series of deployments.
So at this point I am going to switch from talking about releasability, which implies some feature
completeness and utility to users, to deployability, which means that the software is safe to release
into production, even if some features are not yet ready for use and are hidden in some way.

So the deployability of our system consists of a number of different attributes; the unit of software
must be capable of deployment, and it must fulfil all of the properties of releasability that make
sense in the context of that system: fast enough, secure enough, resilient enough, working, and
so on.

This idea of deployability is an extremely useful tool at the system and architectural level. If the
deployment pipeline says that the system is deployable, it is ready to be deployed into production.

Lots of people misunderstand this about continuous delivery, but this is what a deployment pipe-
line is for. If the deployment pipeline says that the change is good, there is no more testing to be
done, no more sign-offs, and no further integration testing with other parts of the system before we
deploy the change into production. We don’t have to deploy into production, but if the change was
approved by the pipeline, it is ready, if we choose to.

This discipline says something important. It defines deployability as there being “no more work to
do,” and that means to achieve a deployable outcome, we must take the ideas of modularity, cohe-
sion, separation of concerns, coupling, and information hiding seriously at the level of deployable
units of software.

The scope of our evaluation should always be an independently deployable unit of software.
If we can’t confidently release our change into production without further work, then our unit of
evaluation, the scope of our deployment pipeline, is incorrect.

There are a variety of ways to approach this. We can choose to include everything in our system
within the scope of evaluation, within the scope of our deployment pipeline, or we can choose to
decompose our system into independently deployable units of software, but nothing else makes
sense.

We can organize multiple components of our system to be built in separate places, from separate
repos, but the scope of evaluation is driven by the demands of deployability. So if we choose this
path and feel it essential to evaluate these components together before release, then the scope
of evaluation, the scope of the deployment pipeline, is still the whole system. This is important
because however fast the evaluation of a small part of the system, it is the time it takes to evaluate

9780137314911_print.indb 198 06/10/21 5:26 PM

ptg36503484

199Speed

the deployability of a change that really matters. So this is the scope that should be the target for
our optimization.

This means that deployability is a vital concern in creating systems. Thinking in these terms means
that it helps to focus us on the problem that we must address. How do we get feedback in a sen-
sible timeframe that allows us to direct our development efforts?

Speed
This brings us to speed. As we discussed in Part II, the speed and quality of the feedback that we
get in our development process are essential to allowing us to optimize for learning. In Chapter 3
we discussed the importance of measurement and focused on the use of stability, and through-
put. Throughput, as a measure of the efficiency of our development process, is clearly speed-
related.

When I consult with teams to help them adopt continuous delivery, I advise them to focus on work-
ing to reduce the time it takes to gain feedback.

I usually offer some guidelines: I tell them to work to optimize their development process so that
they can achieve a releasable outcome, a production-quality deployable unit of software, multiple
times per day, with a strong preference for shorter times. As a target, I generally recommend aiming
to have something that you could deploy into production in less than one hour from the commit of
any change.

This can be a challenging target, but just consider what such a target implies. You can’t have teams
that are too large, because the communication overhead will slow them down too much. You can’t
have siloed teams, because the cost of coordination between teams will be too slow. You have to
have a great position on automated testing, you need feedback mechanisms like continuous inte-
gration and continuous delivery, you have to have good architecture to support these kinds of strat-
egies, and you need to be evaluating independently deployable units of software and many more
things to get to a releasable outcome in less than one hour.

If you take an iterative, experimental approach to only improving the speed of feedback in your
development process, it acts as a kind of fitness function for all of agile theory, all of lean theory,
and all of continuous delivery and DevOps.

This focus on speed and feedback leads you inexorably to these ideas. That is a much more power-
ful, measurable guide in the direction of better outcomes than following some rituals or recipes
from some off-the-shelf development process. This is the kind of idea that I mean when I talk about
engineering for software.

Speed is a tool that we can use to guide us toward higher-quality, more efficient outcomes.

9780137314911_print.indb 199 06/10/21 5:26 PM

ptg36503484

200 Chapter 14 The Tools of an Engineer ing Disc ipl ine

Controlling the Variables
If we want to be able to quickly, reliably, and repeatably test and deploy our systems, we need to
limit variance, and we need to control the variables. We want the same results every time that we
deploy our software, so we need to automate the deployment and manage the configuration of the
systems that we deploy as far as we are able to do so.

Where we can’t exert control, then we have to treat those margins of the system that touch on
the uncontrolled world with great care. If we are deploying software to an environment outside
of our control, we want to depend on it to the least degree that we can. Abstraction, separation of
concerns, and loose coupling are key ideas to limit our exposure to anything outside of our direct
control.

We want the tests that we create to give precisely the same results every time that we run them for
the same version of the software under test. If test results vary, then we should work to exert greater
control to better isolate the test from outside influences or to improve the determinism in our code.
Modularity and cohesion, separation of concerns, abstraction, and coupling are yet again key ideas
in allowing us to exert this control.

Where there is a temptation to have long-running tests, or manual tests, these are often symptoms
of an inappropriate lack of controlling variables.

We often don’t take this idea sufficiently seriously.

Cost of Poor Control

I once consulted for a large organization building a large complex, distributed software system.
They had more than 100 teams of developers working on the project. They asked me to advise
them on performance testing.

They had created a large complex suite of end-to-end performance tests for the whole system.

They had attempted to run their performance test suite on four occasions, but now they didn’t
know what the results meant.

The results were so variable that there was no way to compare them between test runs.

One of the reasons for this was that they had run the test on the corporate network, so depend-
ing on what else was going on at the time, the results were completely skewed.

All the work to create these tests and to execute them was essentially waste because no one
could tell what the results meant.

9780137314911_print.indb 200 06/10/21 5:26 PM

ptg36503484

201Continuous Del iver y

Computers give us a fantastic opportunity. Ignoring cosmic rays and neutrino collisions with our
NAND gates (both catered for by hardware error-correction protocols), computers, and the software
that runs on them, are deterministic. Given the same inputs, computers will generate the same
outputs every time. The only limit to this truth is concurrency.

Computers are also incredibly fast, providing us with an unprecedentedly fantastic, experimental
platform. We can choose to give up these advantages or to take control and make use of them to
our advantage.

How we design and test our systems has a big impact on the degree of control that we can exert.
This is yet another advantage of driving our designs from tests.

Reliably testable code is not multithreaded within the scope of a test, except for some very
particular kinds of test.

Concurrent code is difficult to test because it is not deterministic. So if we design our code
to be testable, we will think carefully about concurrency and work to move it to controlled,
well-understood edges of our system.

In my experience, this results in code that is much easier to test because it is deterministic, but also
code that is much easier to understand and, certainly in the places where I work, code that is, com-
putationally, much more efficient.

Continuous Delivery
Continuous delivery is an organizing philosophy that helps us bring these ideas together into
an effective, efficient, workable approach to development. Working so that our software is always
releasable focuses our minds on the scope of evaluation in a deployment pipeline and the deploy-
ability of our software. This gives us some tools that we can use to structure our code and our
organizations to create these independently deployable units of software.

Continuous delivery is not about automating deployment, though that is part of it; it is about the
much more important idea of organizing our work so that we create a semi-continuous flow of
changes.

If we take this idea seriously, then it demands of us that we structure all aspects of our development
approach to achieve this flow. It has impacts on the structures of our organizations, minimizing
organizational dependencies and promoting the autonomy of small teams that can work quickly
and with high quality without the need to coordinate their efforts with others.

It demands that we apply high levels of automation, particularly in testing our software, so that we
can understand quickly and efficiently that our changes are safe. As a result, it encourages us to
take this testing very seriously so we end up with testable software and can benefit from all of the
advantages that that brings.

9780137314911_print.indb 201 06/10/21 5:26 PM

ptg36503484

202 Chapter 14 The Tools of an Engineer ing Disc ipl ine

Continuous delivery guides us to test the deployment and configuration of our systems and forces
us to take seriously the ideas of controlling the variables so that we can achieve repeatability and
reliability in our tests and, as a side effect, in our production deployments.

Continuous delivery is a highly effective strategy around which to build a strong engineering
discipline for software development.

General Tools to Support Engineering
These are general tools. These ideas are applicable for any problem in software.

Let’s look at a simple example. Imagine that we want to add some software to our system—a
third-party component, subsystem, or framework perhaps. How do we evaluate it?

Of course, it is going to have to work and deliver some kind of value to our system, but before that, I
believe that you can use the ideas in this chapter, and the rest of the book, as qualifiers.

Is the tech deployable? Can we automate the deployment of the system so that we can deploy it
reliably and repeatably?

Is it testable? Can we confirm that it is doing what we need it to do? It is not our job to test third-
party software exhaustively; if we have to do that, it is probably not good enough, not of sufficient
high quality, for us to use. However, to the degree that we want to test that it is doing what it needs
to in the context of our system, is it configured correctly, is it up and running when we need it to be,
and so on? Can we test it?

Does it allow us to control the variables? Can we reliably and repeatably deploy this? Can we version
control the deployment and any configuration?

Is it fast enough to work in a continuous delivery setting? Can we deploy it in a reasonable amount
of time and get things up and running quickly enough to be able to use it and evaluate it multiple
times per day?

If it is a software component that we will be writing code to interface to, does it allow us to maintain
a modular approach to the design of our code, or does it force a programming model of its own on
us that compromises our design in some way?

The wrong answer to any of these questions should almost certainly disqualify the technology for
us before we even look at whether it did a good job and was useful in other contexts.

Unless the service this third-party tech provides is indispensable, I recommend that we seek
alternatives. If the service is indispensable, we will need to do work to try to achieve these
properties despite the tech. This is a cost that needs to be factored in to the cost-benefit calculation
for this tech.

This little example is meant to give a model for the generality of this style of thinking. We can use
the tools of learning, the tools of managing complexity, and these tools to support an engineering
approach to inform decisions and choices in every aspect of our work.

9780137314911_print.indb 202 06/10/21 5:26 PM

ptg36503484

203Summar y

Summary
This chapter brings together the interlinked ideas that I have presented in this book into a coherent
model for developing software more effectively. By adopting the ideas in this chapter as organizing
principles for the way that we approach software development, we will get a better outcome than if
we ignore them.

That is the best that we can ever hope for from any tool, process, or discipline. There is no guaran-
tee of success, but by applying the thinking that I have described here and throughout this book, I
believe that you will create higher-quality code more quickly.

9780137314911_print.indb 203 06/10/21 5:26 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

205

The Modern Software Engineer
All the ideas in this book are deeply intertwined. There is crossover and redundancy everywhere.
You can’t really separate concerns without improving modularity.

Modularity, cohesion, and separation of concerns enhance our ability to gather feedback and so
facilitate experimentation.

As a result, I have looped through each of these topics many times during the course of this book.
That is both intentional and inevitable, but I also think that it says something more important about
these ideas.

Not only are these ideas deeply linked, but they apply nearly everywhere, and that is kind of the
whole point.

It is too easy to get lost in the detail of ephemera. Which language, operating system, text editor,
or framework we choose is detail that, ultimately, should matter less to us than those skills that are
transferable across all of these things.

As I have said elsewhere, the best software developers I have worked with wrote good software
whatever tools they chose to apply. Certainly, many of them had deep expertise and skill with
their chosen tools, but this wasn’t the core of their skill, talent, or value to the organizations that
employed them.

All these ideas are probably familiar to you, but perhaps you haven’t thought of them as an
approach to organizing your work. That has been my intent with this book. I don’t mean only to
remind you that these things are there, but to recommend that you adopt them as the driving prin-
ciples beneath all that you do.

15

9780137314911_print.indb 205 06/10/21 5:26 PM

ptg36503484

206 Chapter 15 The Modern Sof t ware Engineer

These ideas, organized around the principles of optimizing everything that we do to maximize our
ability to learn and to manage the complexity of the systems that we create, genuinely form the
foundation of a discipline that we can justifiably refer to as an engineering approach to solving
problems with software.

If we do these things, we have a higher likelihood of success than if we don’t.

This isn’t a “crank the handle” kind of approach. You are not going to get great software by simply
following my, or anyone else’s, recipe, any more than you will create a great car by following some
mythical dot-to-dot-car-builder’s manual.

This requires you to be thoughtful, diligent, careful, and intelligent. Software development is not an
easy thing to do well. Some forms of coding may be, but as I have already described, there is a lot
more to software development than only coding.

This is a simple model for software engineering, but one that it is difficult to apply.

It is simple in that there are ten fundamental ideas in two groups and then a few tools like
testability, deployability, speed, controlling the variables, and continuous delivery that can help
us achieve those fundamentals, and that is all that there is. However, the implications of these ten
things are often thought-provoking and complex, so that can make them difficult to apply.

Mastering the use of these tools and using these ideas as the foundational principles that underpin
our designs and decisions amplify our chances of success. Using them as the basis on which we
make decisions about the software that we create seems to me to be at the heart of the discipline
of software development.

My objective with this book is not to say “software is easy” but rather to admit that “software is
difficult, so let’s approach it thoughtfully.”

For me, that means we need to approach it with a bit more care, within a framework of thinking
that enables us to find better answers to questions that we haven’t thought of yet. It’s a approach to
finding solutions to problems that we have no idea how to solve.

These ten things give me this framework, and I have seen many individuals and teams benefit from
applying them.

Understanding the nature of our discipline affects our ability to make progress. Recognizing the
reality of the complexity of the systems that we build, and of the very nature of software itself,
is important to success. Treating it lightly as a trivial exercise in coding a semi-linear sequence of
instructions is always doomed to failure in all but the most trivial of programming exercises.

We need to apply mental tools that we can adapt to whatever circumstances we face. This seems
to me to be at the heart of anything that we could think of as a true engineering discipline for
software.

9780137314911_print.indb 206 06/10/21 5:26 PM

ptg36503484

207Digita l ly Disrupt ive Organizat ions

Engineering as a Human Process
The term engineering can be slippery, as it is often misapplied in the context of software
development.

Most definitions of engineering begin with something like “The study of the work of an engineer”
and then go on to describe the use of math and science that informs that work. So it is really about
the process, our approach to doing work.

The working definition that I introduced at the start of this book hits the target for me.

Engineering is the application of an empirical, scientific approach to finding efficient, economic
solutions to practical problems.

Engineering is empirical, in that we are not attempting to apply science to the degree that we
expect perfect results every time. (Actually, science doesn’t work like that either; it just strives to
approach it.)

Engineering is about making rationally informed decisions, often with incomplete information, and
then seeing how our ideas play out in reality based on the feedback that we gather from real-world
experience.

It is based on a scientific style of reasoning. We want to measure what we can sensibly measure.
Take an experimental approach to making changes. Control the variables so that we can understand
the impact of our changes. Develop and maintain a model, a hypothesis, against which we can
continually evaluate our understanding as that understanding grows.

It is important that the solutions we find and the way in which we work to achieve them are
efficient.

We want the systems we create to be as simple as they can be and run as quickly as they can while
consuming the minimum resources they need to succeed.

We also want to be able to create them quickly and with the least amount of work. This is important
for economic reasons, but it is also crucially important if we want to be able to learn effectively. The
timeliness of feedback is a good measure of the efficiency with which we do work. The timeliness of
feedback, as we explored in Chapter 5, is also fundamental to our ability to learn effectively.

In addition to the general applicability of engineering thinking to development, it is important to
recognize that the organizations and teams we work in are information systems too, so the ideas of
managing complexity apply equally, if not more, to those things, too.

Digitally Disruptive Organizations
It is common for businesses and business leaders to talk about ideas like digital disruption, by which
they mean digital technologies applied to re-imagining and disrupting traditional businesses. Think
Amazon disrupting the retail supply chain, Tesla changing the fundamentals of how you approach

9780137314911_print.indb 207 06/10/21 5:26 PM

ptg36503484

208 Chapter 15 The Modern Sof t ware Engineer

car production, or Uber turning taxi services into a gig economy. These ideas are challenging to tra-
ditional businesses and to traditional business thinking.

One of the defining characteristics of organizations like these is that they are nearly always engi-
neering-led. Software development is not a cost center or a support function; it is the “business.”
Even a company like Tesla, whose product is a physical device, has shaped its organization around
software ideas.

Tesla is a continuous delivery company to the extent that if someone thinks of a new idea, they can
reconfigure the factory, often through software, to apply the new idea.

Software is changing how business is conducted, and to do this, it challenges many traditional
assumptions.

One of my favorite models comes from Jan Bosch; he describes it as “BAPO versus OBAP.”1
Figure 15.1 and Figure 15.2 help to explain his idea.

B O

A

P

Figure 15.1
How most businesses plan (OBAP)

Most firms follow an OBAP model (see Figure 15.1). They first fix the organization, departments,
teams, responsibilities, and so on. Then they decide on a business strategy and how to generate rev-
enue and profit or other business outcomes, based on the constraints of those organizational deci-
sions. Next they decide on a suitable architecture to base their systems on, and finally on a process
that can deliver that system architecture.

This is kind of crazy. The business vision and goals are constrained by organizational structure.

A more sensible model is to treat the structure of our organizations as a tool: BAPO.

We identify business vision and goals, decide how we could achieve that technically (architecture),
figure out how we could build something like that (process), and then pick an organizational
structure that will support the necessary activities.

1. Jan Bosch describes these ideas in his blog post “Structure Eats Strategy” at https://bit.ly/33GBrR1 and in his
book Speed, Data and Ecosystems. See https://amzn.to/3x5Ef6T.

9780137314911_print.indb 208 06/10/21 5:26 PM

https://bit.ly/33GBrR1
https://amzn.to/3x5Ef6T

ptg36503484

209Digita l ly Disrupt ive Organizat ions

B O

A

P

Figure 15.2
How business should organize (BAPO)

When we start thinking about the ways that we organize groups of people as a tool to achieve an
end, applying the kind of engineering thinking described in this book is central to the successful
wielding of that tool.

As with any other information system, managing the coupling within our organizations is one of the
keys to success. In the same way that this is true for software, it is true for organizations. Modular,
cohesive organizations with a sensible separation of concerns and teams that are abstracted in a
way that allows them to hide information from other parts of the organization are more scalable
and more efficient than highly coupled groups that can make progress only in lock-step.

This is one of the reasons that it is so difficult to scale organizations. As they grow, the costs of the
coupling increase. Designing organizations to minimize the coupling between different groups of
people is the modern strategy for large, fast-growing companies.

It is not an accident that the research behind the Accelerate book found that one of the defining
characteristics of high-performing teams, based on measures of stability and throughput, is that
they can make decisions within the team, without seeking permission from, or coordination with,
other groups. Such teams are informationally decoupled.

This is important stuff. It is the difference between an organization like Amazon, which more
than doubles in productivity when it doubles in size, and a more traditionally structured firm that
increases productivity by only 85 percent as it doubles in size.2

2. James Lewis, inventor of the term microservices, has an interesting presentation that touches on the work of
the Santa Fe Institute on Non-Linear Dynamics. See https://youtu.be/tYHJgvJzbAk.

9780137314911_print.indb 209 06/10/21 5:26 PM

https://youtu.be/tYHJgvJzbAk

ptg36503484

210 Chapter 15 The Modern Sof t ware Engineer

Outcomes vs. Mechanisms
As I approached writing the conclusions of this book, I became involved in an online debate about
the importance of outcomes and mechanisms. I started from a position of absolute certainty that
everyone would agree with me that outcomes are more important than mechanism. I was quickly
disabused of this assumption.

However, I don’t think that my interlocutors were stupid because they disagreed with me. Looking
at their responses, I think they ultimately agreed with my point. They weren’t dismissing the impor-
tance of “outcomes”; what they were worrying about were some implicit things that they valued, or
the mechanisms that they preferred, that helped them achieve their desired outcomes.

A successful outcome for software development is a complex idea. There are some obvious things
that are easy to measure that we can begin with. We can measure commercial outcomes for some
kinds of businesses and software; this is one measure of success. We can measure usage numbers,
and the success of an open source software project is often measured in the number of downloads
that the software accrues.

We can apply the DORA measures of productivity and quality, stability, and throughput, which tell
us that successful teams produce very high-quality software, very efficiently. We can also measure
customer satisfaction with our products through a variety of metrics.

Good “scores” in all of these dimensions are to some degree desirable outcomes. Some of them are
contextual, and some are not, and working efficiently with quality (having good scores in stability
and throughput) is going to be more successful in any context than not, which is why I consider
these measures to be such an effective tool.

The context in which I had my discussion about “outcomes being more important than mecha-
nisms” was a debate about continuous delivery as an idea compared to DevOps as an idea.3

My point was that I thought continuous delivery defines a desirable outcome, rather than a mecha-
nism, so it is more useful as a general, organizing principle to guide development strategy and
approach.

DevOps is an extremely useful collection of practices; if you adopt all of the practices and do them
well, then you will be able to continuously deliver value into the hands of your users and customers.
However, if a circumstance arises that is outside the scope of DevOps for some reason, because it is
more a collection of practices, then it is less obvious how to cope.

Continuous delivery, though, says “work so that your software is always in a releasable state,”
“optimize for fast feedback,” and “our aim is to have the most efficient feedback from idea to
valuable software in the hands of our users.”

If we take these ideas seriously, we can use them to come up with unique, innovative solutions to
problems that we haven’t encountered before.

3. If you are interested in my thoughts on CD versus DevOps, watch this video on my YouTube channel:
https://youtu.be/-sErBqZgKGs.

M15_Farley_C15_p001-000_new.indd 210 07/10/21 1:41 PM

https://youtu.be/-sErBqZgKGs

ptg36503484

211Durable and General ly Appl icable

When I, and others, began work on codifying continuous delivery, we had never built a car or a
spaceship or a telecoms network. Each of these activities presents very different challenges to the
kinds of systems that we were building when Jez Humble and I wrote our book.

When I work as a consultant, I give my clients specific advice on targets and goals that they should
strive to achieve in terms of feedback from their deployment pipelines. I generally advise my clients
to aim for a result in five minutes from the commit stage and in less than one hour for the whole
pipeline. “Aim to create something releasable every hour.”

If you are Tesla building a car or SpaceX building a rocket or Ericsson building a global mobile
phone infrastructure, this is probably not possible because the physics of burning silicon or making
things out of metal gets in the way.

However, the principles of continuous delivery still hold.

“Work so that your software is always releasable.” You can still test your software thoroughly, reject-
ing any change immediately if a single test fails. “Optimize for fast feedback.” Automate everything:
automate tests to do the vast majority of testing in simulation so that feedback is always fast and
efficient.

More deeply than this, the ideas that we can take from science, the ideas that continuous delivery is
founded upon, are the most durable of all.

• Characterize: Make an observation of the current state.

• Hypothesize: Create a description, a theory that may explain your observation.

• Predict: Make a prediction based on your hypothesis.

• Experiment: Test your prediction.

To make sense of what we learn from this approach, we must control the variables. We can do this
in a few different ways. We can work in small steps so that we can understand the impact of each
step. We can exercise complete control over the configuration of our systems and limit the scope of
change with the techniques of managing complexity that we have discussed.

This is what I mean by engineering—the ideas, methods, and tools that give us a demonstrably
higher chance of success.

You may not be able to hit the feedback targets that I generally recommend, but you can use them
as a target and work toward them within physical, or maybe economic, constraints.

Durable and Generally Applicable
If we were to succeed in defining an engineering discipline for software development, then it would
be agnostic of technology. The principles on which it was built would be long-lasting and useful,
helping us answer questions that we hadn’t foreseen and understand ideas and technologies that
we haven’t invented yet.

9780137314911_print.indb 211 06/10/21 5:26 PM

ptg36503484

212 Chapter 15 The Modern Sof t ware Engineer

We can try this!

My career has been spent developing software that my colleagues and I have designed, but could
we apply this kind of thinking to a different form of software development? Do these engineering
principles still apply to machine learning (ML)?

Figure 15.3 shows a typical ML workflow. Time is spent organizing training data, cleansing it, and
preparing it for use. Suitable machine learning algorithms are selected, fitness functions are defined
to apply to the input data, and then the ML algorithms are let loose on the training data. They cycle
around trying out different solutions to the problem until the desired accuracy of a match to the fit-
ness function is achieved. At this point, the generated algorithm can be deployed into production.

Validation

Accuracy/
FitnessAccuracy

Not Achieved

Accuracy
Achieved

Monitoring
Retrain

Data
Preparation

Data
Collection

Model
Development

Training

TrainingPreparation Production

Production
Use

Figure 15.3
Typical ML workflow

If the accuracy isn’t achieved, the process cycles around with the developers/data scientists chang-
ing the training data and fitness functions to try to target an effective solution.

Once the algorithm makes it into production, it can be monitored, and if any problems are noticed,
it can go back into the cycle to be retrained.

How does our engineering model fit?

Clearly, the development of machine learning systems is all about learning, and not just for the
machine. Developers need to optimize their work, and approach, to allow them to learn what data
to use to train their systems and what works in fitness functions to guide that training.

Training machine learning systems involves lots of data, so thinking about and actively adopting
techniques to manage that complexity is essential to making good progress. It is easy and quite
common, I am told, for data scientists to get lost in morasses of data and make no reproducible
progress.

The development process itself is obviously going to work best as an iterative one. The assembly
and preparation of training data and the establishment and refinement of suitable fitness-functions

9780137314911_print.indb 212 06/10/21 5:26 PM

ptg36503484

213Durable and General ly Appl icable

are fundamentally iterative processes. Feedback is delivered in the form of the accuracy of matches
to the fitness function. Clearly, this will work best when the iterations are short and the feedback
fast and clear. The whole process is one of experimental iteration and refinement.

Thinking of it that way gives us opportunities to do a better job. It will be sensible to optimize the
process so that developers can cycle through it quickly to improve the quality of the learning at
each iteration. That means working in smaller steps and being clear about the nature and quality of
the feedback.

Thinking about each small step as an experiment encourages us to take greater control of the
variables, such as version controlling our scripts and training data.

It seems somewhat bizarre to even imagine this part of the process being planned and working in
anything other than a dynamic, iterative, feedback-driven process of empirical discovery.

Why empirical? Because the data is messy and the outcomes are complex enough to be not
deterministic at the levels of control that are typically exercised in ML development.

That suggests another interesting question. Could you exercise more control? I had interesting con-
versations with an ML expert. He questioned my simple picture (refer to Figure 15.3). “What do you
mean by monitoring? How can we possibly know the result?”

Well, if we took an engineering approach, then we would approach the release of our model into
production as an experiment. If it is an experiment, then we are making a prediction of some kind
and need to test our prediction. At the point that we create our ML system, we could imagine
describing what it is that are we attempting to do. We could predict the kind of outcomes that we
might expect to see. This is more than the fitness function. This is more like defining some error-
bounds, a range, within which we would expect sensible answers to fall.

If our ML system is designed to sell more books, it is probably not doing a good job if the answer
drifts into the territory of “try to take over the world.”

What about managing complexity? Well, one of the problems in ML is that the people doing it often
don’t come from a software background. As a result, many of the techniques that have become nor-
mal for software development—even basic ones like version control—are not the norm.

Nevertheless, it is easy to see ways that the engineering principles in this book might be applied.
Taking a modular approach to writing the scripts to assembly, cleansing the data, and defining
fitness functions is obvious. This is code, so use the tools necessary to allow us to write good code.
Control the variables, keep related ideas close together with cohesion, and keep unrelated ideas
apart with modularity, separation of concerns, abstraction, and reductions in coupling. This is just as
true of the data involved, though.

Applying these ideas to the data and selecting training data that is modular (in the sense that it
focuses on the right aspects of the problem) allow developers of ML systems to iterate more quickly.
This limits changes and focuses the training process and perhaps facilitates a more effective, more
scalable approach to managing training data. This is one take on what data cleansing really means.

9780137314911_print.indb 213 06/10/21 5:26 PM

ptg36503484

214 Chapter 15 The Modern Sof t ware Engineer

Ensuring a separation of concerns within the data and the fitness functions is also important.
You can sensibly think of problems like ML systems making bad decisions based on built-in
“assumptions” between things like economic circumstances and ethnic groupings or salaries and
gender as representing a poor separation of concerns in the training data, as well as a sad state-
ment on our society.

I will stop at this point, before I expose even more of my ignorance about machine learning. My
point here is that if these mental tools are generally applicable, they will provide us with useful ways
to approach problems, even when we are ignorant of them.

In my example here, I don’t claim that I have come up with any correct answers, but my model has
allowed me to pose some questions that aren’t, as far as I understand it, commonly asked in ML
circles. They are questions that we could investigate and that could possibly help us optimize the
process, improve the quality of the production of ML systems, and even improve the systems
themselves.

This is what we should expect from a real engineering process. It will not give us the answers, but it
will provide us with an approach that guides us toward better answers.

Foundations of an Engineering Discipline
The ideas in this book form the foundations for an engineering discipline that can amplify our
chances of success.

The programming language that you choose doesn’t really matter. The framework that you employ
doesn’t really matter. The methodology that you pick matters less than the ideas that I have
outlined in this book.

It is not that these other things have no bearing on our work; they do. They matter to the degree
that the model of hammer that a carpenter chooses to wield matters.

For software, this sort of choice is a bit more than a personal preference because it has an impact on
how a team works together, but in essence the choice of one tech over another has less impact on
the outcome than how that technology is applied.

My intention with this book is to describe ideas that, in general, offer us guidance on how to wield
our tools more effectively.

By focusing on the fundamentals of optimizing for learning and managing complexity, we increase
our chances of success, whatever technology we choose to use.

9780137314911_print.indb 214 06/10/21 5:26 PM

ptg36503484

215Summar y

Summary
The ideas in this book have formed the basis of my approach to software development for many
years now. Inevitably, the process of writing this book has helped me crystallize my thinking in a
way that, I hope, makes it easier to communicate them to other people.

In the latter stages of my career, I have worked, almost exclusively, on complex systems. I have been
fortunate to work on a few problems that few people, if anyone, had solved before. Whenever my
team and I became stuck, these are the fundamentals that we turned to. They worked as guide rails
to steer us to better outcomes, whatever the nature of the problem, even when we had no clue at
all about how to make progress.

These days I make my living advising mostly big multinational firms, often doing innovative things,
sometimes on unprecedented scales. These ideas still hold true and guide us to solving genuinely
difficult problems.

When I get to write code for myself, still something that I take great pleasure in, I apply these same
ideas at the smallest and often simplest of scales.

If you always optimize your work and how you undertake it to maximize your ability to learn
efficiently, you will do a better job.

If you always work, at every scale, to manage the complexity of the work in front of you, you will be
able to sustain your ability to do a better job indefinitely.

These are the hallmarks of a genuine engineering discipline for software development. When we
apply that discipline, we dramatically improve our chances of building better software faster.

There is something important and valuable here. I hope that I have been able to express it in a way
that you will find helps you in your work.

9780137314911_print.indb 215 06/10/21 5:26 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

217

Index

A
abstraction(s), 155, 159, 170, 177

of accidental complexity, 166–168
information hiding and, 151–152
isolating third-party systems, 168–169
leaky, 162–163, 167
maps, 163–164
models and, 163, 164
picking, 163–165
plain text, 161–162
power of, 160–162
pragmatism and, 157–158
from the problem domain, 165
raising the level of, 156–157
storage, 168
testing, 159–160

Accelerate: The Science of Lean Software &
DevOps, 9, 33, 34, 153, 209

acceptance test-driven development, 97
accidental complexity

abstracting, 166–168
separation of concerns and, 139–142

agile development, 32, 44–45, 46, 50, 53, 54, 69,
74, 77

waterfall approach and, 53
Agile Manifesto, 44, 50
Aldrin, B., 16

algorithms, 86–87
alphabet, 52
Amdahl’s law, 88
APIs, 108, 115, 117, 147, 148

functions and, 148–149
Ports and Adapters pattern, 149

Apollo space program, 15–16
modularity, 72–73

architecture, feedback and, 65–67
Armstrong, N., 16
asynchronous programming, 180–182
automated testing, 97–98, 112, 199, 211
aviation

designing for testability, 109–111
modularity and, 72

B
Barker, M., 86
BDD (behavior-driven development), 188
Beck, H., 164
Beck, K., 121

Extreme Programming Explained, 53, 108,
155

big balls of mud, 172. See also quality
causes of

fear of over-engineering, 157–159

Z01_Farley_Index_p217-228.indd 217 06/10/21 7:21 PM

ptg36503484

218 I ndex

organizational and cultural problems,
152–154

technical and design problems, 154–157
coupling and, 177–178

birth of software engineering, 7–8
Bosch, J., 208
bounded context, 126, 144, 147, 165. See also

DDD (domain-driven design)
bridge building, 31

software development and, 11, 12
Brooks, F., 7, 8, 18–19, 32, 119, 155

The Mythical Man Month, 50, 74

C
cache-misses, 85–86
carbon fiber, 25–26
CI (continuous integration), 54, 76

FB (feature branching) and, 62–63
feedback and, 61–63

cloud computing, abstraction, 161
code, 17, 38, 69, 75, 83, 88, 95, 115

big balls of mud, causes of, 152, 154–157.
See also quality
fear of over-engineering, 157–159
organizational and cultural problems,

152–154
technical and design problems, 154–157

cache-misses, 85–86
cohesive, 122–125
compilers, 128
concurrency, 201
coupling, 26, 37, 67, 117, 119, 164, 168, 169,

171, 184
cohesion and, 129
cost of, 171–172
DRY (“Don’t Repeat Yourself), 179
loose, 175–176, 177–178, 180–184
microservices and, 173–174
Nygard model of, 176–177
separation of concerns and, 178–179

feedback and, 60–61
formal methods, 13
future-proofing, 158–159

information hiding, 151–152, 155, 169–170
isolating third-party systems, 168–169
managing complexity, 78–79
messaging, 83, 148
quality and, 63–64
readability, 176
“round-trip”, 156
seams, 167
separation of concerns, 127, 131, 135–136,

137–138
complexity and, 139–142
DDD (domain-driven design) and, 142–

144
dependency injection, 139
Ports and Adapters pattern, 145–147
testability and, 138, 144

third-party, 169
cohesion, 125, 133, 140, 166, 167, 175

in coding, 122–125
coupling and, 129
in human systems, 133
modularity and, 121–122
poor, 132–133
in software, 130–132
TDD (test-driven development) and, 129

compare-and-swap, 87
complexity, 4–5, 21–22, 32, 59, 70, 77–78, 127.

See also coupling; separation of concerns
accidental, 139–140

abstracting, 166–168
separation of concerns and, 139–142

Conway’s law, 37
coupling and, 171
determinism and, 112–114
managing, 36, 37–38, 74, 78–79, 127, 152,

214
modularity and, 72, 73, 105–106, 107–108,

118
precision and, 112
productivity and, 49–50
separation of concerns and, 139–142

computers, 13, 20, 99, 166, 201. See also
abstraction(s); programming

abstraction, 162

Z01_Farley_Index_p217-228.indd 218 06/10/21 7:21 PM

ptg36503484

I ndex 219

evolution of programming languages,
18–19

concurrency, 37, 86, 88, 201
compare-and-swap, 87
determinism and, 113

continuous delivery, 33, 48, 60, 65, 66, 67, 70, 77,
96, 160, 180, 183, 199, 201–202, 208, 210

deployment pipeline, 179, 197–199
continuous integration (CI), 70
Conway’s law, 37
Cost of Change model, 46–48, 159
coupling, 26, 37, 67, 117, 119, 164, 168, 169,

171, 184. See also abstraction(s); cohesion;
separation of concerns

cohesion and, 129
cost of, 171–172
developmental, 174, 179, 183
DRY (“Don’t Repeat Yourself), 179, 180
loose, 174, 175–176, 177–178

asynchronous programming, 180–182
designing for, 182
in human systems, 182–184

microservices and, 173–174, 183–184
Nygard model of, 176–177
scaling up development, 172–173
separation of concerns and, 178–179

CPU, clock cycle, 86–87
craftsmanship, 19

complexity and, 21–22
creativity and, 24–25
engineering and, 27–28
limits of, 19–20
repeatability and, 23

creativity, 70, 74

D
DDD (domain-driven design), 125–126, 142–144

bounded context, 126, 144
dependency injection, 118, 139
dependency management, 179
deployability, 197–199

controlling the variables, 200–201

feedback and, 199
independent, 174
microservices and, 174
modularity and, 116–117

deployment pipeline, 116–117, 136, 179
releasability, 198

design engineering, 12–13, 14–15, 26
feedback, 63–64

design principles. See also complexity; DDD
(domain-driven design); feedback; iteration;
software development

cohesion, 125, 133
in coding, 122–125
coupling and, 129
in human systems, 133
modularity and, 121–122
poor, 132–133
in software, 130–132
test-driven development (TDD) and, 129

incrementalism, 71, 79
iteration and, 71–72
limiting the impact of change, 76–77
modularity, 72–73
organizational, 73–74
Ports and Adapters pattern, 76–77
tools of, 74–76

modularity, 72–73, 75, 106, 108, 113, 120.
See also incrementalism
Apollo space program, 72–73
cohesion and, 121–122
complexity and, 73, 105–106, 107–108,

118
deployability and, 116–117
at different scales, 118
hallmarks of, 106
in human systems, 118–119
microservices and, 73
organizational incrementalism, 73–74
services and, 115–116
testability and, 109–112
testing, 113
undervaluing the importance of good

design, 107–108

Z01_Farley_Index_p217-228.indd 219 06/10/21 7:21 PM

ptg36503484

220 I ndex

separation of concerns, 127, 131, 135–136,
137–138
complexity and, 139–142
DDD (domain-driven design) and,

142–144
dependency injection, 139
Ports and Adapters pattern, 145–147
TDD (test-driven development) and,

149–150
testability and, 138, 144

determinism, complexity and, 112–114
Deutsch, D., 85

“The Beginning of Infinity”, 51–53
DevOps, 59, 67, 153, 210
diagram-driven development, 156–157, 165
digitally disruptive organizations, 207–209
Dijkstra, E., 22
DRY (“Don’t Repeat Yourself), 179, 180
DSL (domain-specific language), 165

E
empiricism, 16, 17, 45, 81, 82, 207, 213

avoiding self-deception, 84–85
experimentation and, 82
parallelism, 88
software testing and, 82–84

engineering, 6, 9, 29–30, 81, 82, 89, 99, 211.
See also software engineering

bridge building and, 31
complexity and, 21–22
craftsmanship and, 27–28
creativity and, 24–25
design, 12–13, 14–15
empiricism, 16
experimentation and, 92
as a human process, 207
math and, 13–14
models, 12–13, 14
over-, 157–159
pragmatism and, 158
precision, 20–21
production, 11, 19, 49
progress and, 26–27

rationalism and, 26
repeatability and, 22–23
scalability, 20–21, 25
software development and, 13
solutions and, 17
tools, 202
trade-offs, 26
working definition, 17

Evans, E., Domain Driven Design, 147
event storming, 165
experimentation, 81, 85, 88, 91–92, 93, 100, 110,

199
automated testing, 97–98
controlling the variables, 96–97
empiricism and, 82
engineering and, 92
feedback, 93, 94
hypotheses, 94–95, 97
measurement and, 95–96
results of testing, 98–100
scope of an experiment, 100

exploration, 45
Extreme Programming, 45, 50, 64

F
Farley, D., Continuous Delivery, 116, 183, 197
FB (feature branching), 62

CI (continuous integration) and, 62–63
feedback, 57, 59–60, 70, 76, 87, 97, 108, 183, 189,

207, 211
in architecture, 65–67
in coding, 60–61
in design, 63–64
early, 67
experimentation and, 93, 94
importance of, 58–59
in integration, 61–63
in organization and culture, 68–70
in product design, 68
speed of, 77, 93–94, 199

Feynman, R., 78, 84–85, 92, 94
formal methods, 13
Fosgren, N., 33, 35

Z01_Farley_Index_p217-228.indd 220 06/10/21 7:21 PM

ptg36503484

I ndex 221

Fowler, M., 32–33
functions, APIs and, 148–149
future-proofing, 158–159

G-H
good example science, 6
Gorman, C., 31
Hamilton, M., 7, 15–16, 168
hardware, 85

software and, 7
Helms, H. J., 59
Hibernate, 31, 32
high-performance software, 128. See also

software
Hopper, G., 19
Humble, J., 33, 96

Continuous Delivery, 116
hypotheses, 97

I
incrementalism, 71, 79

iteration and, 71–72
limiting the impact of change, 76–77
modularity, 72–73
organizational, 73–74
Ports and Adapters pattern, 76–77
tools of, 74–76

information hiding, 155, 169–170
abstraction and, 151–152

iteration, 43, 45, 51, 52, 53–54, 55, 199. See also
incrementalism

as a defensive strategy, 46–48
incrementalism and, 71–72
learning and, 43
ML (machine learning), 43
practical advantages of, 45–46, 54
TDD (test-driven development), 54–55

J-K-L
Kim, G., 33
Kuhn, T., 8
lead time, 34

leaky abstractions, 162–163, 167
Lean, 69
learning, 4, 36–37, 155, 189, 214

feedback and, 57
iteration and, 43

LOR (lunar orbit rendezvous), 72
low code development, 156

M
maps, 163–164
mass production, 22
math, 17

engineering and, 13–14
measurement, 22–23, 39

experimentation and, 95–96
points of, 111
of stability, 33–34
testing and, 111–112, 113–114
of throughput, 34

mechanisms, outcomes and, 210–211
messaging, 174

abstraction and, 161
microservices, 66, 67, 117, 119

coupling and, 173–174, 183–184
deployability, 174
DRY (“Don’t Repeat Yourself), 180
modularity and, 73
scalability, 174

ML (machine learning), 43, 212–214. See also
learning

models, 12–13, 14, 28, 51–52, 85, 167
abstraction and, 163, 164
Cost of Change, 46–48, 159
stability and throughput, 35

modularity, 72–73, 75, 106, 108, 113, 120, 167.
See also coupling; incrementalism

Apollo space program, 72–73
cohesion and, 121–122
complexity and, 73, 105–106, 107–108, 118
deployability and, 116–117
at different scales, 118
hallmarks of, 106
in human systems, 118–119
microservices and, 73

Z01_Farley_Index_p217-228.indd 221 06/10/21 7:21 PM

ptg36503484

222 I ndex

organizational incrementalism, 73–74
services and, 115–116
testability and, 109–112
testing, 113
undervaluing the importance of good

design, 107–108
Moore’s law, 7
Musk, E., 25

N
NASA, Apollo space program, 15–16
NATO (North Atlantic Treaty Organization), 7
natural selection, 8
North, D., 46, 47, 155
Nygard model of coupling, 176–177

O-P
organizational incrementalism, 73–74
outcomes, mechanisms and, 210–211
paradigm shift, 8
parallel programming, 85–86, 87
Parnas, D., 23
performance, 8. See also quality; speed

incrementalism, 71
measuring, 32–34
stability and, 34–35
testability, 128
throughput and, 34–35

Perlis, A. J., 59–60
physics, 98–99
pictograms, 52
plain text, 161
Ports and Adapters pattern, 76–77, 115

APIs and, 149
separation of concerns and, 145–147
when to use, 147–148

pragmatism, abstraction and, 157–158
precision, 96

of measurement, 22–23
scalability and, 20–21

in software engineering, 20
speed and, 34

predictability, 45
predictive approach, 58
problem-solving, experimentation and,

91–92
production, 11–12, 14

complexity and, 21–22, 49–50
craft, 19–20
repeatability and, 22–23
speed of, 34

production engineering, 11, 49
productivity, measuring, 33
programming, 18–19, 59, 60, 108. See also code

abstraction(s), 159, 170, 177
leaky, 162–163
maps, 163–164
models and, 163, 164
picking, 163–165
power of, 160–162
pragmatism and, 157–158
raising the level of, 156–157
storage, 168

asynchronous, 180–182
complexity and, 22
DDD (domain-driven design), 125–126
feedback and, 60–61
parallel, 85–86
professional, 182
separation of concerns, 127, 131

programming languages, 32, 86, 92, 108, 182.
See also code

domain-specific, 165

Q
quality, 70, 155, 157

coding and, 63–64
measuring, 34–35
organizational and cultural problems,

152–154
speed and, 34

Z01_Farley_Index_p217-228.indd 222 06/10/21 7:21 PM

ptg36503484

I ndex 223

R
rationalism, 25, 26, 98
RDBMS (relational database management

systems), 136
refactoring tools, 75
releasability, 198
repeatability, 22–23
Rhumb-lines, 163

S
scalability, 25

precision and, 20–21
science, 92

experimentation and, 91–92
physics, 98–99
rationalism, 98

scientific method, 3–4, 6, 84
hypotheses, 94–95

Scrum, 45, 50
self-deception, avoiding, 84–85
Selig, F., 60
separation of concerns, 127, 131, 135–136,

137–138, 150. See also cohesion
complexity and, 139–142
coupling and, 178–179
DDD (domain-driven design) and, 142–144
dependency injection, 139
Ports and Adapters pattern, 145–147
swapping out a database, 136
TDD (test-driven development) and, 149–150
testability and, 138, 144

serverless computing, 26–27
services, 174. See also microservices

modularity and, 115–116
soak test, 23
software, 5

cohesive, 130–132
craftsmanship, 24–25
crisis, 7
formal methods, 13
good design, 121
half-life of, 155
hardware and, 7

high-performance, 128
mass production, 22
precision and, 21

software development, 3, 6, 8, 9, 31, 32,
49–50, 51, 127, 188–189, 205–206, 215.
See also cohesion; continuous delivery;
experimentation; incrementalism; modularity;
programming; separation of concerns

abstraction and, 160–162
agile, 44–45, 46, 50, 53, 54, 69, 74, 77
bridge building and, 12
cache-misses, 85–86
CI (continuous integration), 54
complexity and, 70
continuous delivery, 33, 48, 96
coordinated approach, 183
coupling, 119
creativity and, 74
diagram-driven, 156–157, 165
distributed approach, 183–184
empiricism and, 82–84
engineering and, 13, 17
experimentation and, 91–92
feedback, 59, 60–64, 65–67, 68–70, 189
incremental design, 77–79
iteration, 43, 45–48, 51, 52, 53–55
learning and, 37
managing complexity, 37–38, 78–79
measuring performance, 32–34
modularity, 106
organizational and cultural problems, 152–154
outcomes vs. mechanisms, 210–211
predictive approach, 58
progress and, 51
scaling up, 172–173
services, 115
solutions and, 51–52
stability, 34–35
TDD (test-driven development), 54–55,

63–64, 65
testability, 108–112
testing, 64–65, 66–67, 75, 188, 189
throughput, 34–35
undervaluing the importance of good

design, 107–108

Z01_Farley_Index_p217-228.indd 223 06/10/21 7:21 PM

ptg36503484

224 I ndex

waterfall approach, 37, 44, 46, 48–49, 51–52,
109

software engineering, 4, 5, 6, 28–30, 101, 180, 206
academic approach to, 15
Apollo space program and, 15–16
birth of, 7–8
bridge building and, 11
complexity and, 4–5
creativity and, 24–25
definition, 4
foundational ideas, 36
iteration, 45–48
learning and, 36–37
models, 14
NATO conference, 59–60
precision and, 20
production and, 11–12
programming languages and, 18–19
repeatability and, 22–23
rethinking, 28–30
serverless computing, 26–27
tools, 187
trade-offs, 26
waterfall approach, 12

SpaceX, 14, 17, 25, 26
speed, 93–94

of feedback, 77, 93–94, 199
quality and, 34

Spolsky, J., 162
spontaneous generation, 8
SQL, 31
stability, 34–35, 70

measuring, 33–34
“State of DevOps” report, 153, 184
storage, 168
stored programs, 7
SUT (system under test), 111
synchronous communication, 180–181

T
TDD (test-driven development), 54–55, 63–64,

65, 67, 97–98, 100, 107, 108, 114, 118, 143,
164, 196. See also software development

cohesion and, 129
separation of concerns and, 149–150

telemetry, 68
Tesla, 208, 211
testability, 108–109, 114, 127, 164, 189–192

improving, 196–197
measurement points, 192–193
modularity and, 109–112
performance, 128
problems with achieving, 193–196
separation of concerns and, 144

testing, 64–65, 66–67, 75, 93, 118, 184, 188, 189,
195. See also feedback

abstraction and, 159–160
automated, 97–98, 112, 199, 211
coupled systems, 111
feedback and, 67
hypotheses, 94–95, 97
measurement and, 111–112, 113–114
modules, 113
results of, 98–100

third-party code, 169
throughput, 70, 95–96

measuring, 34
tools of incrementalism, 74–76

U-V
undervaluing the importance of good design,

107–108
value, 46, 51. See also quality
Vanderburg, G., “Real Software Engineering”, 15
version control, 96

W-X-Y-Z
waterfall approach, 37, 44, 46, 48–49, 51–52,

109
agile development and, 53
Cost of Change model, 46–48
feedback and, 58

waterfall development approach, 37
Watson, T. J., 51

Z01_Farley_Index_p217-228.indd 224 06/10/21 7:21 PM

ptg36503484

A01_Farley_FM_pi-xxviii_new1.indd 4 07/10/21 1:25 PM

This page intentionally left blank

ptg36503484

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certification • Que • Sams • Peachpit Press

• Official guides from the Software Engineering Institute (SEI)
• Design patterns
• Guides for Domain-Driven Design (DDD)
• System and project design guidance

Software Architecture
Books, eBooks & Video

Creating great software architecture today requires effective methods
and tools, an understanding of DevOps, continuous delivery, and
integration, design, as well as services. Check out our books, eBooks, and
video that will help you improve your software architecture.

Visit informit.com/swarchcenter to read sample chapters, shop, and
watch video lessons from featured products.

Extra value: Take advantage of free ground shipping on all U.S. orders. Most eBooks are
available as DRM-free EPUB, MOBI, and PDF—all together for one price so you can learn
on your desktop or preferred device!

SWArch_ad_7_375x9_125.indd 1 9/1/2021 4:43:12 PM

Z01_Farley_Index_p217-228.indd 227 06/10/21 7:21 PM

http://Visitinformit.com/swarchcenterto

ptg36503484

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certif ication • Que • Sams • Peachpit Press

Register Your Product at informit.com/register
Access additional benefits and save 35% on your next purchase

• Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

• Download available product updates.
• Access bonus material if available.*
• Check the box to hear from us and receive exclusive offers on new

editions and related products.

*Registration benefits vary by product. Benefits will be listed on your account page under
Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s
foremost education company. At InformIT.com, you can:

• Shop our books, eBooks, software, and video training
• Take advantage of our special offers and promotions (informit.com/promotions)
• Sign up for special offers and content newsletter (informit.com/newsletters)
• Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

Photo by izusek/gettyimages

reg_informit_ad_7375x9125_JULY2019_CMYK.indd 1 7/16/19 3:43 PM

Z01_Farley_Index_p217-228.indd 228 06/10/21 7:21 PM

http://informit.com/register
http://InformIT.com
http://InformIT.com
http://informit.com/promotions
http://informit.com/newsletters
http://informit.com/community

	Cover
	Half Title
	Title
	Copyright
	Dedication
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Part I: What Is Software Engineering?
	1 Introduction
	Engineering—The Practical Application of Science
	What Is Software Engineering?
	Reclaiming “Software Engineering”
	How to Make Progress

	The Birth of Software Engineering
	Shifting the Paradigm
	Summary

	2 What Is Engineering?
	Production Is Not Our Problem
	Design Engineering, Not Production Engineering
	A Working Definition of Engineering
	Engineering != Code
	Why Does Engineering Matter?
	The Limits of “Craft”
	Precision and Scalability
	Managing Complexity
	Repeatability and Accuracy of Measurement
	Engineering, Creativity, and Craft
	Why What We Do Is Not Software Engineering
	Trade-Offs
	The Illusion of Progress
	The Journey from Craft to Engineering
	Craft Is Not Enough
	Time for a Rethink?
	Summary

	3 Fundamentals of an Engineering Approach
	An Industry of Change?
	The Importance of Measurement
	Applying Stability and Throughput
	The Foundations of a Software Engineering Discipline
	Experts at Learning
	Experts at Managing Complexity
	Summary

	Part II: Optimize for Learning
	4 Working Iteratively
	Practical Advantages of Working Iteratively
	Iteration as a Defensive Design Strategy
	The Lure of the Plan
	Practicalities of Working Iteratively
	Summary

	5 Feedback
	A Practical Example of the Importance of Feedback
	Feedback in Coding
	Feedback in Integration
	Feedback in Design
	Feedback in Architecture
	Prefer Early Feedback
	Feedback in Product Design
	Feedback in Organization and Culture
	Summary

	6 Incrementalism
	Importance of Modularity
	Organizational Incrementalism
	Tools of Incrementalism
	Limiting the Impact of Change
	Incremental Design
	Summary

	7 Empiricism
	Grounded in Reality
	Separating Empirical from Experimental
	“I Know That Bug!”
	Avoiding Self-Deception
	Inventing a Reality to Suit Our Argument
	Guided by Reality
	Summary

	8 Being Experimental
	What Does “Being Experimental” Mean?
	Feedback
	Hypothesis
	Measurement
	Controlling the Variables
	Automated Testing as Experiments
	Putting the Experimental Results of Testing into Context
	Scope of an Experiment
	Summary

	Part III: Optimize for Managing Complexity
	9 Modularity
	Hallmarks of Modularity
	Undervaluing the Importance of Good Design
	The Importance of Testability
	Designing for Testability Improves Modularity
	Services and Modularity
	Deployability and Modularity
	Modularity at Different Scales
	Modularity in Human Systems
	Summary

	10 Cohesion
	Modularity and Cohesion: Fundamentals of Design
	A Basic Reduction in Cohesion
	Context Matters
	High-Performance Software
	Link to Coupling
	Driving High Cohesion with TDD
	How to Achieve Cohesive Software
	Costs of Poor Cohesion
	Cohesion in Human Systems
	Summary

	11 Separation of Concerns
	Dependency Injection
	Separating Essential and Accidental Complexity
	Importance of DDD
	Testability
	Ports & Adapters
	When to Adopt Ports & Adapters
	What Is an API?
	Using TDD to Drive Separation of Concerns
	Summary

	12 Information Hiding and Abstraction
	Abstraction or Information Hiding
	What Causes “Big Balls of Mud”?
	Organizational and Cultural Problems
	Technical Problems and Problems of Design
	Fear of Over-Engineering
	Improving Abstraction Through Testing
	Power of Abstraction
	Leaky Abstractions
	Picking Appropriate Abstractions
	Abstractions from the Problem Domain
	Abstract Accidental Complexity
	Isolate Third-Party Systems and Code
	Always Prefer to Hide Information
	Summary

	13 Managing Coupling
	Cost of Coupling
	Scaling Up
	Microservices
	Decoupling May Mean More Code
	Loose Coupling Isn’t the Only Kind That Matters
	Prefer Loose Coupling
	How Does This Differ from Separation of Concerns?
	DRY Is Too Simplistic
	Async as a Tool for Loose Coupling
	Designing for Loose Coupling
	Loose Coupling in Human Systems
	Summary

	Part IV: Tools to Support Engineering in Software
	14 The Tools of an Engineering Discipline
	What Is Software Development?
	Testability as a Tool
	Measurement Points
	Problems with Achieving Testability
	How to Improve Testability
	Deployability
	Speed
	Controlling the Variables
	Continuous Delivery
	General Tools to Support Engineering
	Summary

	15 The Modern Software Engineer
	Engineering as a Human Process
	Digitally Disruptive Organizations
	Outcomes vs. Mechanisms
	Durable and Generally Applicable
	Foundations of an Engineering Discipline
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G-H
	I
	J-K-L
	M
	N
	O-P
	Q
	R
	S
	T
	U-V
	W-X-Y-Z

